Hybrid bootstrap for mapping quantitative trait loci

被引:0
|
作者
Sun, Hokeun [1 ]
Keener, Robert W. [2 ]
Kim, Dong-Yun [3 ]
机构
[1] Univ Penn, Ctr Clin Epidemiol & Biostat, Philadelphia, PA 19104 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Hybrid bootstrap; Interval mapping; Quantitative trait loci; REGRESSION MIXTURE MODEL; CONFIDENCE-INTERVALS; CROSSES; MARKERS;
D O I
10.1016/j.spl.2010.04.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The hybrid bootstrap uses resampling ideas to extend the duality approach to interval estimation for a parameter of interest when there are nuisance parameters. The confidence region constructed by the hybrid bootstrap may perform much better than the parametric bootstrap region in situations where the data provide substantial information about the nuisance parameter, but limited information about the parameter of interest. We apply this method to estimate the location of quantitative trait lad (QTL) in interval mapping model. The conditional distribution of quantitative traits, given flanked genetic marker genotypes is often assumed to be the mixture model of two phenotype distributions. The mixing proportions in the model represent the recombination rate between a genetic marker and quantitative trait loci and provides information about the unknown location of the QTL Since recombination events are unlikely, we will have less information about the location of the QTL than other parameters. This observation makes a hybrid approach to interval estimation for QTL appealing, especially since the necessary distribution theory, which is often a challenge for mixture models, can be handled by bootstrap simulation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1253 / 1259
页数:7
相关论文
共 50 条
  • [31] Mapping of quantitative trait loci on porcine chromosome 4
    Walling, GA
    Archibald, AL
    Cattermole, JA
    Downing, AC
    Finlayson, HA
    Nicholson, D
    Visscher, PM
    Walker, CA
    Haley, CS
    ANIMAL GENETICS, 1998, 29 (06) : 415 - 424
  • [32] Mapping Environment-Specific Quantitative Trait Loci
    Chen, Xin
    Zhao, Fuping
    Xu, Shizhong
    GENETICS, 2010, 186 (03) : 1053 - 1066
  • [33] Lineage-specific mapping of quantitative trait loci
    Chen, C.
    Ritland, K.
    HEREDITY, 2013, 111 (02) : 106 - 113
  • [34] An Extensive Comparison of Quantitative Trait Loci Mapping Methods
    Kleensang, A.
    Franke, D.
    Alcais, A.
    Abel, L.
    Mueller-Myhsok, B.
    Ziegler, A.
    HUMAN HEREDITY, 2010, 69 (03) : 202 - 211
  • [36] Mapping of quantitative trait loci affecting behaviour in swine
    Reiner, G.
    Koehler, F.
    Berge, T.
    Fischer, R.
    Huebner-Weitz, K.
    Scholl, J.
    Willems, H.
    ANIMAL GENETICS, 2009, 40 (04) : 366 - 376
  • [37] Marker pair selection for mapping quantitative trait loci
    Piepho, HP
    Gauch, HG
    GENETICS, 2001, 157 (01) : 433 - 444
  • [38] Mapping quantitative trait loci for bovine ovulation rate
    Brian W. Kirkpatrick
    Becky M. Byla
    Keith E. Gregory
    Mammalian Genome, 2000, 11 : 136 - 139
  • [39] Pedigree linkage disequilibrium mapping of quantitative trait loci
    Ruzong Fan
    Christie Spinka
    Lei Jin
    Jee Sun Jung
    European Journal of Human Genetics, 2005, 13 : 216 - 231
  • [40] Mapping quantitative trait loci in noninbred mosquito crosses
    Wang, SA
    Huang, S
    Zheng, LB
    Zhao, HY
    GENETICS, 2006, 172 (04) : 2293 - 2308