Adaptive Algorithm for the Generation of Superconfigurations in Hot-Plasma Opacity Calculations

被引:6
|
作者
Pain, Jean-Christophe [1 ,2 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] Univ Paris Saclay, Lab Matiere Condit Extremes, CEA, F-91680 Bruyeres Le Chatel, France
关键词
radiative opacity; statistical methods; super transition arrays; superconfigurations; adaptive algorithm; master theorem; SUPER-TRANSITION-ARRAYS; FOCK STATISTICAL APPROACH; AVERAGE-ATOM MODEL; EQUATION-OF-STATE; PRESSURE IONIZATION; CONSISTENT APPROACH; DENSE-PLASMAS; ENERGY-LEVELS; ELECTRON; TEMPERATURE;
D O I
10.3390/plasma5010012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In hot plasmas, such as the ones encountered in astrophysics or laser-fusion studies, the number of ionic excited states may become huge, and the relevant electron configurations cannot always be handled individually. The Super Transition Array approach enables one to calculate the massic photo-absorption cross-section (or radiative opacity) in a statistical manner consisting of grouping configurations close in energy into superconfigurations. One of the main issues of the method, beyond its spectral resolution, is the determination of the most relevant configurations that contribute to opacity. In this work, we discuss different aspects of the generation of superconfigurations in a hot plasma and propose a new adaptive algorithm.
引用
收藏
页码:154 / 175
页数:22
相关论文
共 50 条
  • [21] Simulations of hot, dense iron plasma opacity at 89 eV and comparison with experiment
    Whittaker, D. S.
    Edwards, M. H.
    Tallents, G. J.
    HIGH ENERGY DENSITY PHYSICS, 2007, 3 (3-4) : 314 - 324
  • [22] Opacity measurements of a hot iron plasma using an x-ray laser
    Edwards, M. H.
    Whittaker, D.
    Mistry, P.
    Booth, N.
    Pert, G. J.
    Tallents, G. J.
    Rus, B.
    Mocek, T.
    Koslova, M.
    McKenna, C.
    Delserieys, A.
    Lewis, C. L. S.
    Notley, M.
    Neely, D.
    PHYSICAL REVIEW LETTERS, 2006, 97 (03)
  • [23] Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry
    Lo, Li
    Shen, Chuan-Chou
    Lu, Chia-Jung
    Chen, Yi-Chi
    Chang, Ching-Chih
    Wei, Kuo-Yen
    Qu, Dingchuang
    Gagan, Michael K.
    JOURNAL OF ASIAN EARTH SCIENCES, 2014, 81 : 115 - 122
  • [24] Opacity calculations for high-Z plasma in non-local thermodynamic equilibrium
    Wu, Zeqing
    Pang, Jinqiao
    Yan, Jun
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2006, 102 (03): : 402 - 408
  • [25] Calculation of the radiative opacity of a hot dense plasma in some problems of inertial confinement fusion
    Orlov, NY
    PLASMA PHYSICS REPORTS, 1999, 25 (08) : 642 - 645
  • [26] Hot electron generation in laser cluster plasma
    Smirnov, MB
    Krainov, VP
    PHYSICS OF PLASMAS, 2003, 10 (02) : 443 - 447
  • [27] Hot electron generation in laser cluster plasma
    Smirnov, MB
    Krainov, VP
    LASER PHYSICS, 2003, 13 (04) : 490 - 494
  • [28] Plasma opacity calculations using the Starrett and Saumon average-atom model with ion correlations
    Ovechkin, A. A.
    Loboda, P. A.
    Falkov, A. L.
    HIGH ENERGY DENSITY PHYSICS, 2019, 30 : 29 - 40
  • [29] FREQUENCY-DEPENDENT OPACITY CALCULATIONS FOR HIGH-Z PLASMA INCLUDING L SPLITTING
    RICKERT, A
    MEYERTERVEHN, J
    LASER AND PARTICLE BEAMS, 1990, 8 (04) : 715 - 727
  • [30] A GLOBAL SOLUTION OF THE ICRH PROBLEM BASED ON THE COMBINED USE OF A PLANAR COUPLING MODEL AND HOT-PLASMA RAY-TRACING IN TOKAMAK GEOMETRY
    KOCH, R
    BHATNAGAR, VP
    MESSIAEN, AM
    VANEESTER, D
    COMPUTER PHYSICS COMMUNICATIONS, 1986, 40 (01) : 1 - 22