Enhancing SDO/HMI images using deep learning

被引:48
|
作者
Diaz Baso, C. J. [1 ,2 ]
Asensio Ramos, A. [1 ,2 ]
机构
[1] Inst Astrofis Canarias, Calle Via Lactea, Tenerife 38205, Spain
[2] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain
关键词
techniques: image processing; Sun: magnetic fields; methods: data analysis; SOLAR OPTICAL TELESCOPE; DYNAMICS; DECONVOLUTION; PHOTOSPHERE; INVERSION; NETWORKS; MISSION;
D O I
10.1051/0004-6361/201731344
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The Helioseismic and Magnetic Imager (HMI) provides continuum images and magnetograms with a cadence better than one per minute. It has been continuously observing the Sun 24 h a day for the past 7 yr. The trade-off between full disk observations and spatial resolution means that HMI is not adequate for analyzing the smallest-scale events in the solar atmosphere. Aims. Our aim is to develop a new method to enhance HMI data, simultaneously deconvolving and super-resolving images and magnetograms. The resulting images will mimic observations with a diffraction-limited telescope twice the diameter of HMI. Methods. Our method, which we call Enhance, is based on two deep, fully convolutional neural networks that input patches of HMI observations and output deconvolved and super-resolved data. The neural networks are trained on synthetic data obtained from simulations of the emergence of solar active regions. Results. We have obtained deconvolved and super-resolved HMI images. To solve this ill-defined problem with infinite solutions we have used a neural network approach to add prior information from the simulations. We test Enhance against Hinode data that has been degraded to a 28 cm diameter telescope showing very good consistency. The code is open source.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Photospheric downflows observed with SDO/HMI, HINODE, and an MHD simulation
    Roudier, T.
    Svanda, M.
    Malherbe, J. M.
    Ballot, J.
    Korda, D.
    Frank, Z.
    ASTRONOMY & ASTROPHYSICS, 2021, 647
  • [42] THE NAKED EMERGENCE OF SOLAR ACTIVE REGIONS OBSERVED WITH SDO/HMI
    Centeno, Rebecca
    ASTROPHYSICAL JOURNAL, 2012, 759 (01):
  • [43] Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm
    Kamrava, Serveh
    Tahmasebi, Pejman
    Sahimi, Muhammad
    NEURAL NETWORKS, 2019, 118 : 310 - 320
  • [44] On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal
    Fleck, B.
    Couvidat, S.
    Straus, T.
    SOLAR PHYSICS, 2011, 271 (1-2) : 27 - 40
  • [45] On the Formation Height of the SDO/HMI Fe 6173 Å Doppler Signal
    B. Fleck
    S. Couvidat
    T. Straus
    Solar Physics, 2011, 271 : 27 - 40
  • [46] Local helioseismology in the SDO HMI/AIA data analysis pipeline
    Bogart, R. S.
    ASTRONOMISCHE NACHRICHTEN, 2007, 328 (3-4) : 352 - 355
  • [47] Dynamics of the photosphere along the solar cycle from SDO/HMI
    Roudier, Th.
    Malherbe, J. M.
    Mirouh, G. M.
    ASTRONOMY & ASTROPHYSICS, 2017, 598
  • [48] A first rapid synoptic magnetic field map using SDO/HMI and SO/PHI data
    Loeschl, P.
    Valori, G.
    Hirzberger, J.
    Schou, J.
    Solanki, S. K.
    Orozco Suarez, D.
    Albert, K.
    Albelo Jorge, N.
    Appourchaux, T.
    Alvarez-Herrero, A.
    Blanco Rodriguez, J.
    Gandorfer, A.
    Germerott, D.
    Guerrero, L.
    Gutierrez-Marques, P.
    Kahil, F.
    Kolleck, M.
    del Toro Iniesta, J. C.
    Volkmer, R.
    Woch, J.
    Fiethe, B.
    Perez-Grande, I.
    Sanchis Kilders, E.
    Balaguer Jimenez, M.
    Bellot Rubio, L. R.
    Calchetti, D.
    Carmona, M.
    Deutsch, W.
    Feller, A.
    Fernandez-Rico, G.
    Fernandez-Medina, A.
    Garcia Parejo, P.
    Gasent Blesa, J. L.
    Gizon, L.
    Grauf, B.
    Heerlein, K.
    Korpi-Lagg, A.
    Lange, T.
    Lopez Jimenez, A.
    Maue, T.
    Meller, R.
    Moreno Vacas, A.
    Mueller, R.
    Nakai, E.
    Schmidt, W.
    Schuehle, U.
    Sinjan, J.
    Staub, J.
    Strecker, H.
    Torralbo, I.
    ASTRONOMY & ASTROPHYSICS, 2024, 681
  • [49] Enhancing Maize Crop Health: Deep Learning Approach for Disease Detection and Classification Using Leaf Images
    Nyange, Roseline
    Chipofya, Mapopa Gota
    Goel, Srishti
    Ashoka, S. B.
    Chola, Channabasava
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE PROCESSING, AIKP 2024, 2025, 2228 : 1 - 11
  • [50] Enhancing Low-Pass Filtering Detection on Small Digital Images Using Hybrid Deep Learning
    Agarwal, Saurabh
    Jung, Ki-Hyun
    ELECTRONICS, 2023, 12 (12)