GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments

被引:10
|
作者
Wang, Michael [1 ]
Yang, Tingjun [1 ]
Flechas, Maria Acosta [1 ]
Harris, Philip [2 ]
Hawks, Benjamin [1 ]
Holzman, Burt [1 ]
Knoepfel, Kyle [1 ]
Krupa, Jeffrey [2 ]
Pedro, Kevin [1 ]
Tran, Nhan [1 ,3 ]
机构
[1] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Northwestern Univ, Evanston, IL USA
来源
FRONTIERS IN BIG DATA | 2021年 / 3卷
基金
美国国家科学基金会;
关键词
machine learning; heterogeneous (CPU plus GPU) computing; GPU (graphics processing unit); particle physics; cloud computing (SaaS);
D O I
10.3389/fdata.2020.604083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images
    Cossio, Pilar
    Rohr, David
    Baruffa, Fabio
    Rampp, Markus
    Lindenstruth, Volker
    Hummer, Gerhard
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 210 : 163 - 171
  • [2] Interactive machine learning via a GPU-accelerated Toolkit
    Jiang, Biye
    Canny, John
    [J]. IUI'17: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2017, : 535 - 546
  • [3] GPU-accelerated approximate kernel method for quantum machine learning
    Browning, Nicholas J.
    Faber, Felix A.
    von Lilienfeld, O. Anatole
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (21):
  • [4] FPGA-Accelerated Machine Learning Inference as a Service for Particle Physics Computing
    Duarte J.
    Harris P.
    Hauck S.
    Holzman B.
    Hsu S.-C.
    Jindariani S.
    Khan S.
    Kreis B.
    Lee B.
    Liu M.
    Lončar V.
    Ngadiuba J.
    Pedro K.
    Perez B.
    Pierini M.
    Rankin D.
    Tran N.
    Trahms M.
    Tsaris A.
    Versteeg C.
    Way T.W.
    Werran D.
    Wu Z.
    [J]. Computing and Software for Big Science, 2019, 3 (1)
  • [5] GPU-accelerated and mixed norm regularized online extreme learning machine
    Polat, Onder
    Kayhan, Sema Koc
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (15):
  • [6] GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access
    Schaeufele, Daniel
    Marcus, Guillermo
    Binder, Nikolaus
    Mehlhose, Matthias
    Keller, Alexander
    Stanczak, Slawomir
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 667 - 671
  • [7] GPU-accelerated micromagnetic simulations using cloud computing
    Jermain, C. L.
    Rowlands, G. E.
    Buhrman, R. A.
    Ralph, D. C.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 401 : 320 - 322
  • [8] The Past, Present, and Future of GPU-Accelerated Grid Computing
    Ino, Fumihiko
    [J]. 2013 FIRST INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2013, : 17 - 21
  • [9] GPU-Accelerated Parallel Hierarchical Extreme Learning Machine on Flink for Big Data
    Chen, Cen
    Li, Kenli
    Ouyang, Aijia
    Tang, Zhuo
    Li, Keqin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (10): : 2740 - 2753
  • [10] A Taste of Scientific Computing on the GPU-Accelerated Edge Device
    Kang, Pilsung
    Lim, Sungmin
    [J]. IEEE ACCESS, 2020, 8 (08): : 208337 - 208347