GPU-accelerated approximate kernel method for quantum machine learning

被引:9
|
作者
Browning, Nicholas J. [1 ,2 ]
Faber, Felix A. [3 ]
von Lilienfeld, O. Anatole [4 ,5 ]
机构
[1] Univ Basel, Inst Phys Chem, Klingelbergstr 80, CH-4056 Basel, Switzerland
[2] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat, Dept Chem, Klingelbergstr 80, CH-4056 Basel, Switzerland
[3] Univ Cambridge, Dept Phys, Cambridge, England
[4] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[5] Berlin Inst Fdn Learning & Data, D-10587 Berlin, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2022年 / 157卷 / 21期
基金
瑞士国家科学基金会;
关键词
Graphics processing unit;
D O I
10.1063/5.0108967
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce Quantum Machine Learning (QML)-Lightning, a PyTorch package containing graphics processing unit (GPU)-accelerated approximate kernel models, which can yield trained models within seconds. QML-Lightning includes a cost-efficient GPU implementation of FCHL19, which together can provide energy and force predictions with competitive accuracy on a microsecond per atom timescale. Using modern GPU hardware, we report learning curves of energies and forces as well as timings as numerical evidence for select legacy benchmarks from atomistic simulation including QM9, MD-17, and 3BPA. (c) 2022 Author(s).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm
    Willsch, Dennis
    Willsch, Madita
    Jin, Fengping
    Michielsen, Kristel
    De Raedt, Hans
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2022, 278
  • [2] Interactive machine learning via a GPU-accelerated Toolkit
    Jiang, Biye
    Canny, John
    [J]. IUI'17: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2017, : 535 - 546
  • [3] Kernel Execution Strategies for GPU-accelerated Version of Method of Moments
    Noga, Artur
    Topa, Tomasz
    [J]. 2014 20TH INTERNATIONAL CONFERENCE ON MICROWAVES, RADAR, AND WIRELESS COMMUNICATION (MIKON), 2014,
  • [4] A GPU-accelerated Approximate Algorithm for Incremental Learning of Gaussian Mixture Model
    Chen, Chunlei
    Mu, Dejun
    Zhang, Huixiang
    Hong, Bo
    [J]. 2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS & PHD FORUM (IPDPSW), 2012, : 1937 - 1943
  • [5] GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments
    Wang, Michael
    Yang, Tingjun
    Flechas, Maria Acosta
    Harris, Philip
    Hawks, Benjamin
    Holzman, Burt
    Knoepfel, Kyle
    Krupa, Jeffrey
    Pedro, Kevin
    Tran, Nhan
    [J]. FRONTIERS IN BIG DATA, 2021, 3
  • [6] GPU-accelerated and mixed norm regularized online extreme learning machine
    Polat, Onder
    Kayhan, Sema Koc
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (15):
  • [7] GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access
    Schaeufele, Daniel
    Marcus, Guillermo
    Binder, Nikolaus
    Mehlhose, Matthias
    Keller, Alexander
    Stanczak, Slawomir
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 667 - 671
  • [8] GPU-Accelerated Finite Element Method
    Dziekonski, Adam
    Lamecki, Adam
    Mrozowski, Michal
    [J]. 2016 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2016,
  • [9] GPU-Accelerated Parallel Hierarchical Extreme Learning Machine on Flink for Big Data
    Chen, Cen
    Li, Kenli
    Ouyang, Aijia
    Tang, Zhuo
    Li, Keqin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (10): : 2740 - 2753
  • [10] GPU-Accelerated Microdosimetry
    Decunha, J.
    Mohan, R.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E467 - E468