Values of transcendental functions at algebraic points

被引:1
|
作者
Desrousseaux, P. A. [1 ]
机构
[1] Univ Sci & Technol Lille, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
关键词
abelian variety; complex multiplication; periods; Gauss and Appell hypergeometric functions;
D O I
10.1016/j.jnt.2006.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using geometric tools introduced by P. Cohen, H. Shiga, J. Wolfart and G. Wustholz, we show in Theorem I that when a certain Gauss hypergeometric function takes an algebraic value at an algebraic point, then another Gauss hypergeometric function takes a transcendental value at a related algebraic point. Using Appell hypergeometric functions, which generalize to two variables the Gauss functions, we study values at algebraic points of a new transcendental function defined in terms of these two functions. By Theorem 2, these values correspond to abelian varieties in the same isogeny class. Using a result of Edixhoven-Yafaev [B. Edixhoven, A. Yafaev, Subvarieties of Shimura varieties, Ann. of Math. 157 (2003) 621-645], this last result is in turn related to the distribution of the moduli of such abelian varieties in certain Shimura varieties. (c) 2006 Elsevier Inc. Tous droits reserves.
引用
收藏
页码:95 / 116
页数:22
相关论文
共 50 条