The paper addresses the modifications of the most common mineral clay "kaolinite" for U(VI) removal from aqueous solutions. A new modified Egyptian natural kaolinite (Ca-MK) was prepared by coating kaolinite with calcium oxide. Another modification process was utilized by calcination and acid activation of kaolinite (E-MK). The Egyptian natural kaolinite (E-NK) and the two modified kaolinites were characterized by different techniques SEM, EDX, XRD, and FTIR. The removal process were investigated in batch experiments as a function of pH, contact time, initial U(VI) concentration, effect of temperature, and recovery of U(VI) were studied. The equilibrium stage was achieved after 60 min and the kinetic data was described well by pseudo-second order model. Isothermal data was better described by the Langmuir isotherm model, indicating the homogeneous removal process. Also the removal process was studied on different temperature 293, 313, and 323 K. The thermodynamic parameters Delta H degrees, Delta S degrees, and Delta G degrees were calculated. The thermodynamic results pointed to the endothermic and favorable nature of the U(VI) removal process in the three kaolinite adsorbents. This study indicated that (Ca-MK) has higher CEC and can be used as a new adsorbent for highly efficient removal of U(VI) from aqueous solutions.