Additive Manufacturing of Nerve Decellularized Extracellular Matrix-Contained Polyurethane Conduits for Peripheral Nerve Regeneration

被引:33
|
作者
Chen, Yi-Wen [1 ,2 ]
Chen, Chien-Chang [3 ]
Ng, Hooi Yee [3 ,4 ]
Lou, Ching-Wen [5 ]
Chen, Yueh-Sheng [5 ,6 ,7 ]
Shie, Ming-You [3 ,5 ,8 ]
机构
[1] China Med Univ, Grad Inst Biomed Sci, Taichung 40447, Taiwan
[2] Asia Univ, 3D Printing Med Res Inst, Taichung 40447, Taiwan
[3] China Med Univ Hosp, 3D Printing Med Res Ctr, Taichung 40447, Taiwan
[4] China Med Univ, Sch Med, Taichung 40447, Taiwan
[5] Asia Univ, Dept Bioinformat & Med Engn, Taichung 40447, Taiwan
[6] China Med Univ Hosp, Biomat Translat Res Ctr, Taichung 40447, Taiwan
[7] China Med Univ, Sch Chinese Med, Lab Biomat, Taichung 40447, Taiwan
[8] China Med Univ, Sch Dent, Taichung 40447, Taiwan
关键词
nerve regeneration; polyurethane; extracellular matrix; dopamine; digital light processing; MECHANICAL-PROPERTIES; SURFACE MODIFICATION; DIFFERENTIATION; SCAFFOLD; CELL; INJURY; MEMBRANES; ADHESION; LAMININ; PROTEIN;
D O I
10.3390/polym11101612
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The nervous system is the part of our body that plays critical roles in the coordination of actions and sensory information as well as communication between different body parts through electrical signal transmissions. Current studies have shown that patients are likely to experience a functional loss if they have to go through a nerve repair for >15 mm lesion. The ideal treatment methodology is autologous nerve transplant, but numerous problems lie in this treatment method, such as lack of harvesting sites. Therefore, researchers are attempting to fabricate alternatives for nerve regeneration, and nerve conduit is one of the potential alternatives for nerve regeneration. In this study, we fabricated polyurethane/polydopamine/extracellular matrix (PU/PDA/ECM) nerve conduits using digital light processing (DLP) technology and assessed for its physical properties, biodegradability, cytocompatibility, neural related growth factor, and proteins secretion and expression and its potential in allowing cellular adhesion and proliferation. It was reported that PU/PDA/ECM nerve conduits were more hydrophilic and allowed enhanced cellular adhesion, proliferation, expression, and secretion of neural-related proteins (collagen I and laminin) and also enhanced expression of neurogenic proteins, such as nestin and microtubule-associated protein 2 (MAP2). In addition, PU/PDA/ECM nerve conduits were reported to be non-cytotoxic, had sustained biodegradability, and had similar physical characteristics as PU conduits. Therefore, we believed that PU/PDA/ECM nerve conduits could be a potential candidate for future nerve-related research or clinical applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Physical processing for decellularized nerve xenograft in peripheral nerve regeneration
    Hsu, Ming-Wei
    Chen, Szu-Han
    Tseng, Wan-Ling
    Hung, Kuo-Shu
    Chung, Tzu-Chun
    Lin, Sheng-Che
    Koo, Jahyun
    Hsueh, Yuan-Yu
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [22] Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury
    Wang, Yanchao
    Liang, Ruichao
    Lin, Jingjing
    Chen, Jinlin
    Zhang, Qiao
    Li, Jiehua
    Wang, Minjin
    Hui, Xuhui
    Tan, Hong
    Fu, Qiang
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (38) : 7979 - 7990
  • [23] Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation
    Gong-Hai Han
    Jiang Peng
    Ping Liu
    Xiao Ding
    Shuai Wei
    Sheng Lu
    Yu Wang
    Neural Regeneration Research, 2019, 14 (08) : 1343 - 1351
  • [24] Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation
    Han, Gong-Hai
    Peng, Jiang
    Liu, Ping
    Ding, Xiao
    Wei, Shuai
    Lu, Sheng
    Wang, Yu
    NEURAL REGENERATION RESEARCH, 2019, 14 (08) : 1343 - 1351
  • [25] Strategic Design and Fabrication of Nerve Guidance Conduits for Peripheral Nerve Regeneration
    Sarker, Md
    Naghieh, Saman
    McInnes, Adam D.
    Schreyer, David J.
    Chen, Xiongbiao
    BIOTECHNOLOGY JOURNAL, 2018, 13 (07)
  • [26] Electrically Conductive Hydrogel Nerve Guidance Conduits for Peripheral Nerve Regeneration
    Park, Junggeon
    Jeon, Jin
    Kim, Byongyeon
    Lee, Min Suk
    Park, Sihyeon
    Lim, Juhan
    Yi, Jongdarm
    Lee, Hwangjae
    Yang, Hee Seok
    Lee, Jae Young
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (39)
  • [27] Nerve Guidance by a Decellularized Fibroblast Extracellular Matrix
    Harris, Greg M.
    Madigan, Nicolas N.
    Lancaster, Karen Z.
    Enquist, Lynn W.
    Windebank, Anthony J.
    Schwartz, Jeffrey
    Schwarzbauer, Jean E.
    MATRIX BIOLOGY, 2017, 60-61 : 176 - 189
  • [28] Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration
    Lu, Qingqing
    Zhang, Feng
    Cheng, Weinan
    Gao, Xiang
    Ding, Zhaozhao
    Zhang, Xiaoyi
    Lu, Qiang
    Kaplan, David L.
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (14)
  • [29] Surgical Procedure for Transplanting Artificial Nerve Conduits for Peripheral Nerve Regeneration
    Matsumine, Hajime
    Sasaki, Ryo
    Takeuchi, Masaki
    Yamato, Masayuki
    Sakurai, Hiroyuki
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2011, 128 (02) : 95E - 97E
  • [30] Growth Factors and Supporting Cells of Nerve Conduits for Peripheral Nerve Regeneration
    Yang XIANG
    Zhi-Wu CHEN
    Jun-Shui ZHENG
    Zhuan YANG
    Guang-Hao LIN
    Peng WEI
    Chinese Journal of Plastic and Reconstructive Surgery, 2019, 1 (04) : 46 - 54