A Performance-Oriented Comparison of Neural Network Approaches for Anomaly-based Intrusion Detection

被引:0
|
作者
Iannucci, Stefano [1 ]
Ables, Jesse [1 ]
Anderson, William [1 ]
Abburi, Bhuvanesh [1 ]
Cardellini, Valeria [2 ]
Banicescu, Ioana [1 ]
机构
[1] Mississippi State Univ, Mississippi State, MS 39762 USA
[2] Univ Roma Tor Vergata, Rome, Italy
关键词
Performance Assessment; Anomaly Detection; Intrusion Detection;
D O I
10.1109/SSCI50451.2021.9660100
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intrusion Detection Systems employ anomaly detection algorithms to detect malicious or unauthorized activities in real time. Anomaly detection algorithms that exploit artificial neural networks (ANN) have recently gained particular interest. These algorithms are usually evaluated and compared through effectiveness measures, which aim to quantify how well anomalies are identified based on detection capabilities. However, to the best of our knowledge, the performance characterization from the perspective of computational cost and space, training time, memory consumption, together with a quantitative analysis of the trade-offs between algorithm effectiveness and performance, have not been explored yet. In this work, we select four recently proposed unsupervised anomaly detection algorithms based on ANN, namely: REPresentations for a random nEarest Neighbor (REPEN), DevNet, OmniAnomaly, Multi-Objective Generative Adversarial Active Learning (MO-GAAL); we perform a variety of experiments to evaluate the trade-offs between the effectiveness and performance of the selected algorithms using two reference dataset: NSL-KDD and CIC-IDS-2017. Our results confirm the importance of this study, showing that none of the selected algorithms dominate the others in terms of both, effectiveness and performance. Furthermore, it shows that approaches based on Recurrent Neural Networks, which exploit the temporal dependency of the samples, have a clear advantage over the others in terms of effectiveness, while exhibiting the worst execution time.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection
    Al-Turaiki, Isra
    Altwaijry, Najwa
    [J]. BIG DATA, 2021, 9 (03) : 233 - 252
  • [2] ANOMALY-BASED NETWORK INTRUSION DETECTION METHODS
    Nevlud, Pavel
    Bures, Miroslav
    Kapicak, Lukas
    Zdralek, Jaroslav
    [J]. ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 11 (06) : 468 - 474
  • [3] LSTM for Anomaly-Based Network Intrusion Detection
    Althubiti, Sara A.
    Jones, Eric Marcell, Jr.
    Roy, Kaushik
    [J]. 2018 28TH INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 2018, : 293 - 295
  • [4] Anomaly-Based Network Intrusion Detection System
    Villalba, L. J. G.
    Orozco, A. L. S.
    Vidal, J. M.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (03) : 850 - 855
  • [5] Anomaly-Based Network Intrusion Detection: An Outlier Detection Techniques
    Kumar, Neeraj
    Kumar, Upendra
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 262 - 269
  • [6] Anomaly-Based Network Intrusion Detection Using SVM
    Zhang, Yuan
    Yang, Qinghai
    Lambotharan, Sangarapillai
    Kyriakopoulos, Konstantinos
    Ghafir, Ibrahim
    AsSadhan, Basil
    [J]. 2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [7] Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic
    Abdulhammed, Razan
    Faezipour, Miad
    Abuzneid, Abdelshakour
    AbuMallouh, Arafat
    [J]. IEEE SENSORS LETTERS, 2019, 3 (01)
  • [8] Anomaly-based network intrusion detection: Techniques, systems and challenges
    Garcia-Teodoro, P.
    Diaz-Verdejo, J.
    Macia-Fernandez, G.
    Vazquez, E.
    [J]. COMPUTERS & SECURITY, 2009, 28 (1-2) : 18 - 28
  • [9] Robust anomaly-based intrusion detection system for in-vehicle network by graph neural network framework
    Junchao Xiao
    Lin Yang
    Fuli Zhong
    Hongbo Chen
    Xiangxue Li
    [J]. Applied Intelligence, 2023, 53 : 3183 - 3206
  • [10] Performance Analysis and Comparison of Anomaly-based Intrusion Detection in Vehicular Ad hoc Networks
    Shams, Erfan A.
    Ulusoy, Ali Hakan
    Rizaner, Ahmet
    [J]. RADIOENGINEERING, 2020, 29 (04) : 664 - 671