An ultraweakDPG method for viscoelastic fluids

被引:13
|
作者
Keith, B. [1 ]
Knechtges, P. [2 ]
Roberts, N. V. [3 ]
Elgeti, S. [2 ]
Behr, M. [2 ]
Demkowicz, L. [1 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Rhein Westfal TH Aachen, Chair Computat Anal Tech Syst, Aachen, Germany
[3] Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA
关键词
LOG-CONFORMATION FORMULATION; FINITE-ELEMENT-METHOD; CONSTITUTIVE EQUATION; DPG METHOD; FLOWS; CYLINDER;
D O I
10.1016/j.jnnfm.2017.06.006
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We explore a vexing benchmark problem for viscoelastic fluid flows with the discontinuous Petrov-Galerkin (DPG) finite element method of Demkowicz and Gopalakrishnan [1,2]. In our analysis, we develop an intrinsic a posteriori error indicator which we use for adaptive mesh generation. The DPG method is useful for the problem we consider because the method is inherently stable requiring no stabilization of the linearized discretization in order to handle the advective terms in the model. Because stabilization is a pressing issue in these models, this happens to become a very useful property of the method which simplifies our analysis. This built-in stability at all length scales and the a posteriori error indicator additionally allows for the generation of parameter-specific meshes starting from a common coarse initial mesh. A DPG discretization always produces a symmetric positive definite stiffness matrix. This feature allows us to use the most efficient direct solvers for all of our computations. We use the Camellia finite element software package [3,4] for all of our analysis. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [41] TRANSIENT FLOWS OF VISCOELASTIC FLUIDS
    RANDRIA, P
    LY, DP
    BELLET, D
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1982, 1 (04): : 697 - 711
  • [42] On the control of viscoelastic Jeffreys fluids
    Doubova, A.
    Fernandez-Cara, E.
    SYSTEMS & CONTROL LETTERS, 2012, 61 (04) : 573 - 579
  • [43] CONVERGING FLOWS OF VISCOELASTIC FLUIDS
    METZNER, AB
    UEBLER, EA
    FONG, CFH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (05): : 810 - &
  • [44] Mathematical modelling for viscoelastic fluids
    Pontrelli, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) : 349 - 357
  • [45] Viscoelastic properties of magnetorheological fluids
    Jérôme Claracq
    Jérôme Sarrazin
    Jean-Pierre Montfort
    Rheologica Acta, 2004, 43 : 38 - 49
  • [46] Viscoelastic properties of MR fluids
    Li, WH
    Chen, G
    Yeo, SH
    SMART MATERIALS & STRUCTURES, 1999, 8 (04): : 460 - 468
  • [47] UNSTABLE FLOW OF VISCOELASTIC FLUIDS
    TOMITA, Y
    SHIMBO, T
    JSME INTERNATIONAL JOURNAL, 1987, 30 (266): : 1257 - 1265
  • [48] Turbulent entrainment in viscoelastic fluids
    Abreu, Hugo
    Pinho, Fernando T.
    da Silva, Carlos B.
    JOURNAL OF FLUID MECHANICS, 2022, 934
  • [49] Undulatory Swimming in Viscoelastic Fluids
    Shen, X. N.
    Arratia, P. E.
    PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [50] A NETWORK MODEL FOR VISCOELASTIC FLUIDS
    WIEGEL, FW
    PHYSICA, 1969, 42 (01): : 156 - &