An ultraweakDPG method for viscoelastic fluids

被引:13
|
作者
Keith, B. [1 ]
Knechtges, P. [2 ]
Roberts, N. V. [3 ]
Elgeti, S. [2 ]
Behr, M. [2 ]
Demkowicz, L. [1 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Rhein Westfal TH Aachen, Chair Computat Anal Tech Syst, Aachen, Germany
[3] Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA
关键词
LOG-CONFORMATION FORMULATION; FINITE-ELEMENT-METHOD; CONSTITUTIVE EQUATION; DPG METHOD; FLOWS; CYLINDER;
D O I
10.1016/j.jnnfm.2017.06.006
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We explore a vexing benchmark problem for viscoelastic fluid flows with the discontinuous Petrov-Galerkin (DPG) finite element method of Demkowicz and Gopalakrishnan [1,2]. In our analysis, we develop an intrinsic a posteriori error indicator which we use for adaptive mesh generation. The DPG method is useful for the problem we consider because the method is inherently stable requiring no stabilization of the linearized discretization in order to handle the advective terms in the model. Because stabilization is a pressing issue in these models, this happens to become a very useful property of the method which simplifies our analysis. This built-in stability at all length scales and the a posteriori error indicator additionally allows for the generation of parameter-specific meshes starting from a common coarse initial mesh. A DPG discretization always produces a symmetric positive definite stiffness matrix. This feature allows us to use the most efficient direct solvers for all of our computations. We use the Camellia finite element software package [3,4] for all of our analysis. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [1] Method for animating viscoelastic fluids
    Goktekin, TG
    Bargteil, AW
    O'Brien, JF
    ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03): : 463 - 468
  • [2] Lattice Boltzmann method for viscoelastic fluids
    Ispolatov, I
    Grant, M
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [3] FLOWS OF VISCOELASTIC FLUIDS TREATED BY THE METHOD OF CHARACTERISTICS
    BASOMBRIO, FG
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1991, 39 (01) : 17 - 54
  • [4] A HYBRID METHOD FOR COMPUTING THE FLOW OF VISCOELASTIC FLUIDS
    ARIEL, PD
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 14 (07) : 757 - 774
  • [5] NEW METHOD TO DETERMINE CHARACTERISTIC TIME OF VISCOELASTIC FLUIDS
    KWACK, EY
    HARTNETT, JP
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1983, 10 (01) : 77 - 82
  • [6] A Lattice Boltzmann Method and Asynchronous Model Coupling for Viscoelastic Fluids
    Su, Jin
    Ouyang, Jie
    Lu, Junxiang
    APPLIED SCIENCES-BASEL, 2018, 8 (03):
  • [7] CLASS OF VISCOELASTIC FLUIDS
    NENDL, D
    PANAGIOTOPOULOS, PD
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (05): : T126 - T127
  • [8] On hydrodynamics of viscoelastic fluids
    Lin, FH
    Liu, C
    Zhang, P
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (11) : 1437 - 1471
  • [9] Viscoelastic relaxation in fluids
    Badmaev B.B.
    Damdinov B.B.
    Dembelova T.S.
    Bulletin of the Russian Academy of Sciences: Physics, 2015, 79 (10) : 1301 - 1305
  • [10] Microswimming in viscoelastic fluids
    Gaojin, Li
    Eric, Lauga
    Ardekani, Arezoo M.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2021, 297