A nonlocal maximum likelihood estimation method for enhancing magnetic resonance phase maps

被引:4
|
作者
Sudeep, P. V. [1 ,2 ]
Palanisamy, P. [1 ]
Kesavadas, Chandrasekharan [3 ]
Sijbers, Jan [4 ]
den Dekker, Arnold J. [4 ,5 ]
Rajan, Jeny [6 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Elect & Commun Engn, Tiruchirappalli, Tamil Nadu, India
[2] Natl Inst Technol Karnataka, Dept Elect & Commun Engn, Surathkal, India
[3] Sree Chitra Tirunal Inst Med Sci & Technol, Dept Imaging Sci & Intervent Radiol, Trivandrum, Kerala, India
[4] Univ Antwerp, Dept Phys, iMinds Vis Lab, Antwerp, Belgium
[5] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
[6] Natl Inst Technol Karnataka, Dept Comp Sci & Engn, Surathkal, India
关键词
Denoising; Magnetic resonance image; Maximum likelihood estimation; Noise; Phase map; RICIAN NOISE-REDUCTION; MAGNITUDE MRI; IMAGES; FILTER;
D O I
10.1007/s11760-016-1039-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A phase map can be obtained from the real and imaginary components of a complex valued magnetic resonance (MR) image. Many applications, such as MR phase velocity mapping and susceptibility mapping, make use of the information contained in the MR phase maps. Unfortunately, noise in the complex MR signal affects the measurement of parameters related to phase (e.g, the phase velocity). In this paper, we propose a nonlocal maximum likelihood (NLML) estimation method for enhancing phase maps. The proposed method estimates the true underlying phase map from a noisy MR phase map. Experiments on both simulated and real data sets indicate that the proposed NLML method has a better performance in terms of qualitative and quantitative evaluations when compared to state-of-the-art methods.
引用
收藏
页码:913 / 920
页数:8
相关论文
共 50 条
  • [41] Chaos and regularity of radionuclides with maximum likelihood estimation method
    Majarshin, A. Jalili
    Sabri, H.
    Mobarakeh, S. K. Mousavi
    Pan, Feng
    Luo, Yan-An
    Zhang, Yu
    Draayer, Jerry P.
    [J]. PHYSICA SCRIPTA, 2020, 95 (10)
  • [42] A multivariate maximum likelihood method for modal parameter estimation
    Lardies, J
    Larbi, N
    [J]. STRUCTURAL DYNAMICS, VOLS 1 AND 2, 1999, : 163 - 168
  • [43] NONPARAMETRIC MAXIMUM-LIKELIHOOD ESTIMATION BY THE METHOD OF SIEVES
    GEMAN, S
    HWANG, CR
    [J]. ANNALS OF STATISTICS, 1982, 10 (02): : 401 - 414
  • [44] Intensity correction method based on maximum likelihood estimation
    Han, Yanxiang
    Zhang, Zhisheng
    [J]. ELECTRONICS LETTERS, 2012, 48 (14) : 829 - 830
  • [45] Joint Estimation of State and Parameter with Maximum Likelihood Method
    Zhuang, Huiping
    Lu, Jieying
    Li, Junhui
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5276 - 5281
  • [46] A hierarchic maximum likelihood method for delay estimation in CDMA
    Joutsensalo, J
    Lilleberg, J
    Hottinen, A
    Karhunen, J
    [J]. 1996 IEEE 46TH VEHICULAR TECHNOLOGY CONFERENCE, PROCEEDINGS, VOLS 1-3: MOBILE TECHNOLOGY FOR THE HUMAN RACE, 1996, : 188 - 192
  • [47] Camera Calibration Method Based on Maximum Likelihood Estimation
    Yoshioka, Michifumi
    Omatu, Sigeru
    [J]. DISTRIBUTED COMPUTING, ARTIFICIAL INTELLIGENCE, BIOINFORMATICS, SOFT COMPUTING, AND AMBIENT ASSISTED LIVING, PT II, PROCEEDINGS, 2009, 5518 : 616 - 620
  • [48] Stochastic maximum likelihood method for propagation parameter estimation
    Ribeiro, CB
    Ollila, E
    Koivunen, V
    [J]. 2004 IEEE 15TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 1839 - 1843
  • [49] Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods
    Rajan, Jeny
    Jeurissen, Ben
    Verhoye, Marleen
    Van Audekerke, Johan
    Sijbers, Jan
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (16): : 5221 - 5234
  • [50] Maximum Likelihood Estimation: a method for flight dynamics - angle of attack estimation
    Lichota, Piotr
    Lasek, Maciej
    [J]. PROCEEDINGS OF THE 2013 14TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2013, : 218 - 221