2D Covalent-Organic Framework Electrodes for Supercapacitors and Rechargeable Metal-Ion Batteries

被引:113
|
作者
Kandambeth, Sharath [1 ]
Kale, Vinayak S. [1 ]
Shekhah, Osama [1 ]
Alshareef, Husam N. [2 ]
Eddaoudi, Mohamed [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr, Phys Sci & Engn Div, Funct Mat Design Discovery & Dev Res Grp FMD3, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia
关键词
2D covalent‐ organic frameworks; energy storage; rechargeable metal‐ ion batteries; supercapacitors; REDUCED GRAPHENE OXIDE; CATHODE MATERIALS; CARBON NANOTUBES; ELECTROCHEMICAL CAPACITORS; FACILE SYNTHESIS; THIN-FILMS; ENERGY; CRYSTALLINE; PERFORMANCE; STORAGE;
D O I
10.1002/aenm.202100177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Covalent-organic frameworks (COFs) represent a new frontier of crystalline porous organic materials with framework structures in 2D or 3D domains, which make them promising for many applications. Herein, the fundamental structural design aspects of 2D-COFs are reviewed, which position them as suitable electrodes for electrochemical energy storage. The ordered pi-pi stacked arrangement of the organic building blocks in juxtaposed layers provides a pathway for efficient electronic charge transport; the 2D structure provides a pathway for enhanced ionic diffusion, which enhances ionic transport. Importantly, the tunable pore size enables 2D-COFs to accommodate mobile ions with different sizes and charges, positioning them as prospect materials for various types of batteries. Distinctively, the ability to functionalize their pore system with a periodic array of redox active species, enriching their potential redox chemistry, provides a pathway to control the redox and capacitive contributions to the charge storage mechanism. The strong covalently linked framework backbone of COFs is an additional merit for achieving long cycle life, and stability against the "leaching out" problem of active molecules in strong electrolytes as observed in other organic materials applied in energy storage devices.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Metal/Covalent-Organic Framework Based Cathodes for Metal-Ion Batteries
    Kong, Lingjun
    Liu, Ming
    Huang, Hui
    Xu, Yunhua
    Bu, Xian-He
    ADVANCED ENERGY MATERIALS, 2022, 12 (04)
  • [2] A review of covalent organic framework electrode materials for rechargeable metal-ion batteries
    Zeng, Shu-mao
    Huang, Xiao-xiong
    Ma, Ying-jie
    Zhi, Lin-jie
    NEW CARBON MATERIALS, 2021, 36 (01) : 1 - 16
  • [3] Covalent organic frameworks as electrode materials for rechargeable metal-ion batteries
    Wu, Manman
    Zhou, Zhen
    INTERDISCIPLINARY MATERIALS, 2023, 2 (02): : 231 - 259
  • [4] Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries
    Sun, Bowen
    Sun, Zixu
    Yang, Yi
    Huang, Xiang Long
    Jun, Seong Chan
    Zhao, Chongchong
    Xue, Jiaojiao
    Liu, Shude
    Liu, Hua Kun
    Dou, Shi Xue
    ACS NANO, 2023, 18 (01) : 28 - 66
  • [5] Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries
    Miner, Elise M.
    Dinca, Mircea
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2149):
  • [6] Templated Synthesis of 2D Polyimide Covalent Organic Framework for Rechargeable Sodium-Ion Batteries
    Shehab, Mohammad K. K.
    Weeraratne, K. Shamara
    El-Kadri, Oussama M. M.
    Yadavalli, Vamsi K. K.
    El-Kaderi, Hani M. M.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (11)
  • [7] Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries
    Zhang, Lin
    Zhang, Xiaofei
    Han, Diandian
    Zhai, Lipeng
    Mi, Liwei
    SMALL METHODS, 2023, 7 (11):
  • [8] Carbon nanomaterials-constructed electrodes for rechargeable metal-ion batteries
    Ge, Guangfu
    Wu, Yinglei
    van der Heide, Emile
    Chen, Zhenying
    Zhu, Jinhui
    Zhuang, Xiaodong
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [9] Recent Advances in Covalent Organic Framework Electrode Materials for Alkali Metal-Ion Batteries
    Sun, Jianlu
    Xu, Yifan
    Lv, Yanqi
    Zhang, Qichun
    Zhou, Xiaosi
    CCS CHEMISTRY, 2023, 5 (06): : 1259 - 1276
  • [10] Computational Design of 2D Covalent-Organic Framework Membranes for Organic Solvent Nanofiltration
    Wei, Wan
    Liu, Jie
    Jiang, Jianwen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 1734 - 1744