Exosomes secreted from sonic hedgehog-modified bone mesenchymal stem cells facilitate the repair of rat spinal cord injuries

被引:29
|
作者
Jia, Yijia [1 ]
Lu, Tingsheng [1 ]
Chen, Qiling [1 ]
Pu, Xingwei [1 ]
Ji, Linsong [1 ]
Yang, Jianwen [1 ]
Luo, Chunshan [1 ]
机构
[1] Guizhou Prov Osteol Hosp, Dept Spine Surg, 123 Shachong South St, Guiyang 550002, Guizhou, Peoples R China
关键词
Sonic hedgehog; Exosomes; Spinal cord injury; BMSCs; RECOVERY; CONTRIBUTES; IMPROVE; PATHWAY;
D O I
10.1007/s00701-021-04829-9
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Spinal cord injuries (SCIs) can cause a loss of neurons and associated sensory and motor functionality below the injured site. No approaches to treating SCIs in humans have been developed to date. Exosomes are extracellular vesicles that hold promise as a potential therapeutic modality when treating such injuries. The present study was thus designed to determine whether sonic hedgehog (Shh)-overexpressing bone mesenchymal stem cell (BMSC)-derived exosomes were protective in the context of SCIs. Methods Exosomes were extracted from control or Shh lentivirus-transduced BMSCs, yielding respective BMSC-Exo and BMSC-Shh-Exo preparations which were intravenously injected into SCI model rats. Shh expression in spinal cord tissues in these animals was then assessed via immunohistochemical staining, while Basso-Beattie-Bresnahan (BBB) scores were utilized to measure high limb motor function. Neuronal damage and regeneration within the spinal cord were additionally evaluated via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Nissl, hematoxylin and eosin, and immunofluorescent staining. Results Both BMSC-Exo and BMSC-Shh-Exo preparations significantly increased Shh expression in the spinal cord of SCI model rats and improved BBB scores in these treated animals, while also increasing the frequencies of Nissl- and NeuN-positive neurons are reducing the numbers of apoptotic and GFAP-positive neurons. While both treatments yielded some degree of benefit to treated animals relative to untreated controls, BMSC-Shh-Exos were more beneficial than were control BMSC-Exos. Conclusions Shh-overexpressing BMSC-derived exosomes represent an effective treatment that can facilitate SCI repair in rats.
引用
收藏
页码:2297 / 2306
页数:10
相关论文
共 50 条
  • [41] Exosomes Secreted from circZFHX3-modified Mesenchymal Stem Cells Repaired Spinal Cord Injury Through mir-16-5p/IGF-1 in Mice
    Tian, Feng
    Yang, Jiazhao
    Xia, Rui
    NEUROCHEMICAL RESEARCH, 2022, 47 (07) : 2076 - 2089
  • [42] Genetic modification of mesenchymal stem cells in spinal cord injury repair strategies
    Cui, Xiaoyan
    Chen, Lei
    Ren, Yilong
    Ji, Yazhong
    Liu, Wei
    Liu, Jie
    Yan, Qiao
    Cheng, Liming
    Sun, Yi E.
    BIOSCIENCE TRENDS, 2013, 7 (05) : 202 - 208
  • [43] Exosomes Secreted from circZFHX3-modified Mesenchymal Stem Cells Repaired Spinal Cord Injury Through mir-16-5p/IGF-1 in Mice
    Feng Tian
    Jiazhao Yang
    Rui Xia
    Neurochemical Research, 2022, 47 : 2076 - 2089
  • [44] Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury
    Dong, Yuzhen
    Yang, Libin
    Yang, Lin
    Zhao, Hongxing
    Zhang, Chao
    Wu, Dapeng
    NEURAL REGENERATION RESEARCH, 2014, 9 (16) : 1520 - 1524
  • [45] Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury
    Yuzhen Dong
    Libin Yang
    Lin Yang
    Hongxing Zhao
    Chao Zhang
    Dapeng Wu
    NeuralRegenerationResearch, 2014, 9 (16) : 1520 - 1524
  • [46] visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury
    Rui-ping Zhang
    Cheng Xu
    Yin Liu
    Jian-ding Li
    Jun Xie
    Neural Regeneration Research, 2015, 10 (03) : 404 - 411
  • [47] Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury
    Zhang, Rui-ping
    Xu, Cheng
    Liu, Yin
    Li, Jian-ding
    Xie, Jun
    NEURAL REGENERATION RESEARCH, 2015, 10 (03) : 404 - 411
  • [48] Sonic hedgehog enhances the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells
    Cai, Jia-Qin
    Huang, Yi-Zhou
    Chen, Xiao-He
    Xie, Hong-Lei
    Zhu, Hong-Ming
    Tang, Li
    Yang, Zhi-Ming
    Huang, Yong-Can
    Deng, Li
    CELL BIOLOGY INTERNATIONAL, 2012, 36 (04) : 349 - 355
  • [49] Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis
    Rager, Terrence M.
    Olson, Jacob K.
    Zhou, Yu
    Wang, Yijie
    Besner, Gail E.
    JOURNAL OF PEDIATRIC SURGERY, 2016, 51 (06) : 942 - 947
  • [50] Nanobiomechanics of Repair Bone Regenerated by Genetically Modified Mesenchymal Stem Cells
    Tai, Kuangshin
    Pelled, Gadi
    Sheyn, Dima
    Bershteyn, Anna
    Han, Lin
    Kallai, Ilan
    Zilberman, Yoram
    Ortiz, Christine
    Gazit, Dan
    TISSUE ENGINEERING PART A, 2008, 14 (10) : 1709 - 1720