A CHEBYSHEV SPECTRAL COLLOCATION METHOD FOR THE COUPLED NONLINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Rashid, Abdur [1 ]
Ismail, Ahmad Izani Bin Md. [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town, Malaysia
关键词
Coupled Nonlinear Schrodinger Equations; Chebyshev Spectral Collocation Method; FINITE-DIFFERENCE METHOD; STABILITY; CONVERGENCE; SOLITONS; SCHEME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the Chebyshev spectral collocation method to obtain numerical solutions for the coupled nonlinear Schrodinger equations. The Schrodinger equations are reduced to a system of ordinary differential equations that are solved by the fourth order Runge-Kutta method. The comparison between the numerical solution and the exact solution for the test cases shows good accuracy of the Chebyshev spectral collocation method.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条
  • [41] A Fourier spectral method for the nonlinear coupled space fractional Klein-Gordon-Schrodinger equations
    Jia, Junqing
    Jiang, Xiaoyun
    Yang, Xiu
    Zhang, Hui
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (02):
  • [42] Dimensional reduction of nonlinear delay differential equations with periodic coefficients using Chebyshev spectral collocation
    Venkatesh Deshmukh
    Eric A. Butcher
    Ed Bueler
    Nonlinear Dynamics, 2008, 52 : 137 - 149
  • [43] A splitting Chebyshev collocation method for Schrodinger-Poisson system
    Wang, Hanquan
    Liang, Zhenguo
    Liu, Ronghua
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5034 - 5057
  • [44] A conservative spectral method for the coupled Schrodinger-KdV equations
    Zhou, Hao
    Han, Danfu
    Du, Miaoyong
    Shi, Yao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (05):
  • [45] Bifurcations and spectral stability of solitary waves in coupled nonlinear Schrodinger equations
    Yagasaki, Kazuyuki
    Yamazoe, Shotaro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 348 - 401
  • [46] A MULTI-DOMAIN CHEBYSHEV COLLOCATION METHOD FOR NONLINEAR FRACTIONAL DELAY DIFFERENTIAL EQUATIONS
    Guo, Yuling
    Wang, Zhongqing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12): : 7521 - 7545
  • [47] Numerical study of nonlinear Schrodinger and coupled Schrodinger equations by differential transformation method
    Borhanifar, A.
    Abazari, Reza
    OPTICS COMMUNICATIONS, 2010, 283 (10) : 2026 - 2031
  • [48] An hp-Version Chebyshev Spectral Collocation Method for Nonlinear Volterra Integro-Differential Equations with Weakly Singular Kernels
    Jia, Hongli
    Yang, Yang
    Wang, Zhongqing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (03) : 969 - 994
  • [49] Chebyshev spectral collocation methods for nonlinear isothermal magnetostatic atmospheres
    Khater, AH
    Shamardan, AB
    Callebaut, DK
    Ibrahim, RS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 309 - 329
  • [50] Spectral splitting method for nonlinear Schrodinger equations with singular potential
    Sacchetti, Andrea
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 1483 - 1499