Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings

被引:120
|
作者
Walz, Kenneth A. [1 ]
Johnson, Christopher S. [2 ]
Genthe, Jamie [1 ]
Stoiber, Lucas C. [1 ]
Zeltner, Walter A. [1 ]
Anderson, Marc A. [1 ]
Thackeray, Michael M. [2 ]
机构
[1] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI 53706 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
Battery; Lithium-ion; Spinel; Coating; TiO2; ZrO2; MANGANESE OXIDE SPINEL; CAPACITY FADE; CO ELECTRODES; LITHIUM; PERFORMANCE; MN; DISSOLUTION; BATTERIES; CARBONATE; BEHAVIOR;
D O I
10.1016/j.jpowsour.2010.03.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, nanoporous zirconia (ZrO2) and Mania (TiO2) coatings are shown to stabilize the cycling performance of lithium-ion batteries with Li Mn2O4 spinel cathodes. The effect of firing temperature on the coating pore size is discussed and the resulting performance of the coated cathodes is evaluated. Stabilization mechanisms, such as neutralization of acidic electrolytes by ZrO2 and TiO2 coatings, are examined. It is proposed that the establishment of a complex nanoporous network for lithium-ion transport results in a more uniform current distribution at the particle surface, thereby suppressing capacity fade that may be associated with surface instabilities of the spinel electrode. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:4943 / 4951
页数:9
相关论文
共 50 条
  • [21] The advantages of mass normalized electrochemical impedance spectra for the determination of the kinetic parameters of LiMn2O4 cathodes
    Kamenskii, M. A.
    Eliseeva, S. N.
    Tolstopjatova, E. G.
    Volkov, A., I
    Zhuzhelskii, D., V
    Kondratiev, V. V.
    ELECTROCHIMICA ACTA, 2019, 326
  • [22] Effect of lithium and manganese sources on the elevated temperature electrochemical performance of LiMn2O4
    Huang, KL
    Zhao, JC
    Liu, SQ
    Tang, AD
    Stanford, M
    ACTA METALLURGICA SINICA, 2003, 39 (07) : 739 - 743
  • [23] Electrochemical characterization of LiMn2O4
    Dept. of Electromechanical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
    不详
    Cailiao Kexue yu Gongyi, 2008, 2 (232-234+238):
  • [24] Characteristics and electrochemical performance of the LiMn2O4 with TiO2 surface layer in lithium secondary batteries
    Kim, Cheon-Soo
    Kim, Keon
    Yi, Cheol-Woo
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2015, 16 (02): : 232 - 236
  • [25] Effect of methylene methanedisulfonate as an additive on the cycling performance of LiMn2O4 cathode at elevated temperature
    Huang, Tao
    Wu, Maoxiang
    Wang, Wenguo
    Pan, Ying
    Fang, Guihuang
    JOURNAL OF POWER SOURCES, 2014, 262 : 303 - 309
  • [26] Synthesis of LiMn2O4 for cathode material and its cycling stability
    State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
    不详
    Kuei Suan Jen Hsueh Pao, 2006, 11 (1321-1325):
  • [27] The Sintering Temperature Effect on Electrochemical Properties of LiMn2O4
    Hwang, Jin Tae
    Park, Sung Bin
    Park, Chang Kyoo
    Jang, Ho
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2011, 32 (11): : 3952 - 3958
  • [28] Polyol mediated synthesis and electrochemical performance of nanostructured LiMn2O4 cathodes
    Yang, Shuo
    Homberger, Melanie
    Noyong, Michael
    Simon, Ulrich
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (12): : 10847 - 10862
  • [29] Effects of conducting carbon on the electrochemical performance of LiCoO2 and LiMn2O4 cathodes
    Liu, ZL
    Lee, JY
    Lindner, HJ
    JOURNAL OF POWER SOURCES, 2001, 97-8 : 361 - 365
  • [30] Manganese dissolution from LiMn2O4 cathodes at elevated temperature: methylene methanedisulfonate as electrolyte additive
    Renheng Wang
    Xinhai Li
    Zhixing Wang
    Huajun Guo
    Journal of Solid State Electrochemistry, 2016, 20 : 19 - 28