Exact travelling wave solutions of the dissipative coupled Korteweg-de Vries equation

被引:0
|
作者
Liu Qiang [1 ,2 ]
Zhang Weiguo [1 ]
机构
[1] Shanghai Univ Sci & Technol, Sch Sci, Shanghai 200093, Peoples R China
[2] Coll Zhengzhou Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
The dissipative coupled Korteweg-de Vries equation; Global phase portrait; Solitary wave solution; Damped oscillatory solution; Error estimate; Heteroclinic orbit; FIELD-THEORY;
D O I
10.1016/j.amc.2009.12.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper employs the theory of planar dynamical systems and undetermined coefficient method to study travelling wave solutions of the dissipative coupled Korteweg-de Vries equation. The possible kink profile solitary wave solutions and approximate damped oscillatory solutions of the equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:4203 / 4215
页数:13
相关论文
共 50 条
  • [21] EXACT-SOLUTIONS OF THE COMPLEX MODIFIED KORTEWEG-DE VRIES EQUATION
    MOHAMMAD, AA
    CAN, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11): : 3223 - 3233
  • [22] Travelling wave solution of Korteweg-de Vries-Burger's equation
    Sahu, B
    Roychoudhury, R
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (06) : 517 - 527
  • [23] Some new exact wave solutions and conservation laws of potential Korteweg-de Vries equation
    Triki, Houria
    Ak, Turgut
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Mirzazadeh, Mohammad
    Kara, Abdul Hamid
    Aydemir, Tugba
    NONLINEAR DYNAMICS, 2017, 89 (01) : 501 - 508
  • [24] Exact Traveling Wave Solutions of Further Modified Korteweg-De Vries Equation in Multicomponent Plasma
    Abdelsalam, U. M.
    Zobaer, M. S.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2175 - 2182
  • [25] Integrability, bilinearization, solitons and exact three wave solutions for a forced Korteweg-de Vries equation
    Das, Amiya
    Mandal, Uttam Kumar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [26] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [27] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [28] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [29] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 2002, 28 : 235 - 236
  • [30] On travelling wave solutions of the Burgers-Korteweg-de Vries equation
    Feng, Zhaosheng
    NONLINEARITY, 2007, 20 (02) : 343 - 356