The Poisson Equations in the Nonholonomic Suslov Problem: Integrability, Meromorphic and Hypergeometric Solutions

被引:0
|
作者
Fedorov, Y. N. [1 ]
Maciejewski, A. J. [2 ]
Przybylska, M. [3 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, Diagonal 647, E-08028 Barcelona, Spain
[2] Univ Zielona Gora, Astron Inst, PL-65246 Zielona Gora, Poland
[3] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland
来源
GEOMETRIC METHODS IN PHYSICS | 2009年 / 1191卷
关键词
nonholonomic systems; Suslov system; integrability; hypergeometric function; ABSENCE;
D O I
10.1063/1.3275602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Poisson equations for the classical Suslov system of rigid body mechanics and show that under some minor conditions, these equations are solvable in terms of the generalized hypergeometric functions. Using this property we have calculated the angle between the axes of asymptotic rotations of the body and have shown that it does not depend on the initial conditions. Moreover, we also show, that if the equations possess the Painleve property, then, under an extra condition, they admit an additional polynomial first integral, which can be calculated explicitly.
引用
收藏
页码:85 / +
页数:2
相关论文
共 50 条
  • [1] The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions
    Fedorov, Yuri N.
    Maciejewski, Andrzej J.
    Przybylska, Maria
    NONLINEARITY, 2009, 22 (09) : 2231 - 2259
  • [2] Hamiltonicity and integrability of the Suslov problem
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2011, 16 : 104 - 116
  • [3] The geometry and integrability of the Suslov problem
    Fernandez, Oscar E.
    Bloch, Anthony M.
    Zenkov, Dmitry V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [4] Hamiltonicity and integrability of the Suslov problem
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2): : 104 - 116
  • [5] Meromorphic solutions of difference equations, integrability and the discrete Painleve equations
    Halburd, R. G.
    Korhonen, R. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (06) : R1 - R38
  • [6] NON-INTEGRABILITY OF THE SUSLOV PROBLEM
    Maciejewski, A. J.
    Przybylska, M.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 73 - 80
  • [7] On the topology of an integrable variant of a nonholonomic suslov problem
    Anoshkina E.V.
    Kunii T.L.
    Okuneva G.G.
    Shinagawa Y.
    Journal of Mathematical Sciences, 1999, 94 (4) : 1448 - 1456
  • [8] Analytic non-integrability of the Suslov problem
    Mahdi, Adam
    Valls, Claudia
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [9] Geometry and integrability of Euler-Poincare-Suslov equations
    Jovanovic, B
    NONLINEARITY, 2001, 14 (06) : 1555 - 1567
  • [10] Existence of finite-order meromorphic solutions as a detector of integrability in difference equations
    Halburd, R. G.
    Korhonen, R. J.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (02) : 191 - 203