Applying chemical engineering concepts to non-thermal plasma reactors

被引:5
|
作者
Affonso Nobrega, Pedro [1 ]
Gaunand, Alain [2 ]
Rohani, Vandad [1 ]
Cauneau, Francois [1 ]
Fulcheri, Laurent [1 ]
机构
[1] PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France
[2] PSL Res Univ, MINES ParisTech, CTP Ctr Thermodynam pProc, 35 Rue St Honore, F-77300 Fontainebleau, France
关键词
non-thermal plasma; chemical engineering; dielectric barrier discharge (DBD); corona discharge; plug flow reactor; volatile organic compounds; DIELECTRIC BARRIER DISCHARGE; CORONA DISCHARGE; HIGHER HYDROCARBONS; DECOMPOSITION; FLOW; METHANE; AIR; TEMPERATURE; PARAMETERS; CONVERSION;
D O I
10.1088/2058-6272/aab301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Effects of Non-Thermal Plasma on Mammalian Cells
    Kalghatgi, Sameer
    Kelly, Crystal M.
    Cerchar, Ekaterina
    Torabi, Behzad
    Alekseev, Oleg
    Fridman, Alexander
    Friedman, Gary
    Azizkhan-Clifford, Jane
    PLOS ONE, 2011, 6 (01):
  • [42] Non-thermal plasma for exhaust gases treatment
    Alva R E.
    Pacheco P M.
    Gómez B F.
    Pacheco P J.
    Colín C A.
    Sánchez-Mendieta V.
    Valdivia B R.
    Santana D A.
    Huertas C J.
    Frías P H.
    Frontiers of Mechanical Engineering, 2015, 10 (3) : 301 - 305
  • [43] Non-thermal plasma for exhaust gases treatment
    Elvia ALVA R
    Marquidia PACHECO P
    Fernando GMEZ B
    Joel PACHECO P
    Arturo COLN C
    Vctor SNCHEZMENDIETA
    Ricardo VALDIVIA B
    Alfredo SANTANA D
    Jos HUERTAS C
    Hilda FRAS P
    Frontiers of Mechanical Engineering, 2015, 10 (03) : 301 - 305
  • [44] Food bioprocessing by non-thermal plasma technology
    Hati, Subrota
    Patel, Maulik
    Yadav, Deepika
    CURRENT OPINION IN FOOD SCIENCE, 2018, 19 : 85 - 91
  • [45] Medically important biofilms and non-thermal plasma
    Jaroslav Julák
    Vladimír Scholtz
    Eva Vaňková
    World Journal of Microbiology and Biotechnology, 2018, 34
  • [46] Non-thermal plasma catalytic conversion of methane
    Kalra, C
    Cho, Y
    Gutsol, A
    Fridman, A
    Rufael, TS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U687 - U687
  • [47] Non-Thermal Plasma Aided Soil Decontamination
    Stryczewska, Henryka D.
    Pawlat, Joanna
    Ebihara, Kenji
    JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, 2013, 16 (01) : 23 - 30
  • [48] Wound Healing Therapy with non-thermal Plasma
    不详
    AKTUELLE DERMATOLOGIE, 2015, 41 (07) : 272 - 272
  • [49] Effects of non-thermal atmospheric plasma on protein
    Xu, Yong
    Bai, Yu
    Dai, Chenwei
    Lv, Han
    Zhou, Xiuhong
    Xu, Qinghua
    JOURNAL OF CLINICAL BIOCHEMISTRY AND NUTRITION, 2022, 71 (03) : 173 - 184
  • [50] Air pollution control by non-thermal plasma
    Mueller, S.
    Zahn, R. -J.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2007, 47 (07) : 520 - 529