Orbital spectrum analysis of non-axisymmetric perturbations of the guiding-center particle motion in axisymmetric equilibria

被引:4
|
作者
Zestanakis, P. A. [1 ]
Kominis, Y. [2 ]
Anastassiou, G. [1 ]
Hizanidis, K. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens, Greece
[2] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Athens, Greece
关键词
TRANSPORT; SIMULATION; DIFFUSION;
D O I
10.1063/1.4943871
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The presence of non-axisymmetric perturbations in an axisymmetric magnetic field equilibrium renders the Guiding Center (GC) particle motion non-integrable and may result in particle, energy, and momentum redistribution, due to resonance mechanisms. We analyse these perturbations in terms of their spectrum, as observed by the particles in the frame of unperturbed GC motion. We calculate semi-analytically the exact locations and strength of resonant spectral components of multiple perturbations. The presented Orbital Spectrum Analysis method is based on an exact Action-Angle transform that fully takes into account Finite Orbit Width effects. The method provides insight into the particle dynamics and enables the prediction of the effect of any perturbation to all different types of particles and orbits in a given, analytically or numerically calculated, axisymmetric equilibrium.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] VIBRATION ANALYSIS OF NON-AXISYMMETRIC TIRES
    ALLAEI, D
    SOEDEL, W
    YANG, TY
    JOURNAL OF SOUND AND VIBRATION, 1988, 122 (01) : 11 - 29
  • [22] On the flow of non-axisymmetric perturbations of cylinders via surface diffusion
    LeCrone, Jeremy
    Simonett, Gieri
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) : 5510 - 5531
  • [23] Reconstruction of the plasma surface in a RFP in the presence of non-axisymmetric perturbations
    Zanca, P
    Martini, S
    PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 (10) : 1251 - 1275
  • [24] Versatile controllability of non-axisymmetric magnetic perturbations in KSTAR experiments
    Han, Hyunsun
    Jeon, Y. M.
    Hahn, S. H.
    Ahn, H. S.
    Bak, J. G.
    In, Y.
    Kim, J.
    Woo, M. H.
    Kim, H. S.
    Jin, J. K.
    Park, B. H.
    Yoon, S. W.
    FUSION ENGINEERING AND DESIGN, 2016, 108 : 60 - 66
  • [25] The stability of the motion of a non-axisymmetric body in a resistive medium
    Osipenko, K. Yu
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2017, 81 (06): : 455 - 462
  • [26] Effect of non-axisymmetric perturbations on the ambipolarErand neoclassical particle flux inside the ITER pedestal region
    Reynolds-Barredo, J. M.
    Tribaldos, V.
    Loarte, A.
    Polevoi, A. R.
    Hosokawa, M.
    Sanchez, R.
    NUCLEAR FUSION, 2020, 60 (08)
  • [27] Analysis for determining non-axisymmetric residual stresses
    García-Granada, AA
    Smith, DJ
    Pavier, MJ
    ECRS 5: PROCEEDINGS OF THE FIFTH EUROPEAN CONFERENCE ON RESIDUAL STRESSES, 2000, 347-3 : 119 - 124
  • [28] Distribution transforms for guiding center orbit coordinates in axisymmetric tokamak equilibria 
    Benjamin, Stuart
    Jarleblad, Henrik
    Salewski, Mirko
    Stagner, Luke
    Hole, Matthew
    Pfefferle, David
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 292
  • [29] Free vibration analysis of non-axisymmetric and axisymmetric structures by the dual reciprocity BEM
    Agnantiaris, JP
    Polyzos, D
    Beskos, DE
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (09) : 713 - 723
  • [30] Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations
    Turnbull, A. D.
    Ferraro, N. M.
    Izzo, V. A.
    Lazarus, E. A.
    Park, J. -K.
    Cooper, W. A.
    Hirshman, S. P.
    Lao, L. L.
    Lanctot, M. J.
    Lazerson, S.
    Liu, Y. Q.
    Reiman, A.
    Turco, F.
    PHYSICS OF PLASMAS, 2013, 20 (05)