Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles

被引:0
|
作者
Kurnaz, Sefer [1 ]
Kaynak, Okyay [1 ,2 ]
Konakoglu, Ekrem [1 ]
机构
[1] Air Force Acad, Aeronaut & Space Technol Inst, Istanbul, Turkey
[2] Bogazici Univ, TR-34342 Bebek, Turkey
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes ANFIS logic based autonomous flight controller for UAVs (unmanned aerial vehicles). Three fuzzy logic modules are developed for the control of the altitude, the speed, and the roll angle, through which the attitude and the latitude-longitude of the air vehicle is controlled. The imple, mentation framework utilizes MATLAB's standard configuration and the Aerosim Aeronautical Simulation Block Set which provides a complete set of tools for rapid development of detailed 6 degree-of-freedom nonlinear generic manned/unmanned aerial vehicle models. The Aerosonde UAV model is used in the simulations in order to demonstrate the performance and the potential of the controllers. Additionally, Microsoft Flight Simulator and FlightGear Flight Simulator are deployed in order to get visual outputs that aid the designer in the evaluation of the controllers. Despite the simple design procedure, the simulated test flights indicate the capability of the approach in achieving the desired performance.
引用
收藏
页码:14 / +
页数:3
相关论文
共 50 条
  • [31] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM BASED MODELLING OF VEHICLE GUIDANCE
    Avdagic, Zikrija
    Cernica, Elvedin
    Omanovic, Samir
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2019, 14 (04): : 2116 - 2131
  • [32] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING
    Markopoulos, Angelos P.
    Georgiopoulos, Sotirios
    Kinigalakis, Myron
    Manolakos, Dimitrios E.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (09) : 1234 - 1248
  • [33] Diagnosing Breast Cancer Based on the Adaptive Neuro-Fuzzy Inference System
    Chidambaram, S.
    Ganesh, S. Sankar
    Karthick, Alagar
    Jayagopal, Prabhu
    Balachander, Bhuvaneswari
    Manoharan, S.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [34] State of charge estimation based on adaptive neuro-fuzzy inference system
    Guan Jiansheng
    Xu Wenjin
    Zhang Abu
    ICCSE'2006: Proceedings of the First International Conference on Computer Science & Education: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2006, : 840 - 843
  • [35] A damage assessment model based on adaptive neuro-fuzzy inference system
    Wu, Zheng-Long
    Zhao, Zhong-Shi
    Binggong Xuebao/Acta Armamentarii, 2012, 33 (11): : 1352 - 1357
  • [36] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [37] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [38] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [39] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [40] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65