Eigenvalue Problem For Perturbated p-Laplacian

被引:0
|
作者
Latifi, Mehdi [1 ]
Alimohammady, Mohsen [2 ]
机构
[1] Khatam Ol Anbia PBA Univ, Dept Basic Sci, Tehran, Iran
[2] Univ Mazandaran, Fac Basic Sci, Dept Math, Babolsar 474161468, Iran
来源
THAI JOURNAL OF MATHEMATICS | 2022年 / 20卷 / 01期
关键词
eigenvalue; p-Laplacian; Ljusternik-Schnirelman principle; REGULARITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We want to study the nonlinear eigenvalue problem, for perturbated p-Laplacian operator with zero Dirichlet condition on a bounded region in RN. Using the Ljusternik-Schnirelman principle we show that the existence of a nondecreasing sequence of nonnegative eigenvalues and a sequence of eigenfunction that weakly convergences to zero function.
引用
收藏
页码:35 / 54
页数:20
相关论文
共 50 条
  • [31] The first eigenvalue of Finsler p-Laplacian
    Yin, Song-Ting
    He, Qun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 30 - 49
  • [32] On the fundamental eigenvalue ratio of the p-Laplacian
    Fleckinger, Jacqueline
    Harrell, Evans M., II
    de Thelin, Francois
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (07): : 613 - 619
  • [33] Principal eigenvalue of the p-laplacian in RN
    Furusho, Yasuhiro
    Murata, Yuji
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (08): : 4749 - 4756
  • [34] The dual eigenvalue problems for p-Laplacian
    Yan-Hsiou Cheng
    Wei-Cheng Lian
    Wei-Chuan Wang
    Acta Mathematica Hungarica, 2014, 142 : 132 - 151
  • [35] Eigenvalue bounds for the signless p-Laplacian
    Borba, Elizandro Max
    Schwerdtfeger, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [36] LINKED EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN
    BINDING, PA
    HUANG, YX
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1023 - 1036
  • [37] ON THE FIRST EIGENVALUE OF THE NORMALIZED p-LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    Kawohl, Bernd
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 577 - 590
  • [38] Estimates of the principal eigenvalue of the p-Laplacian
    Benedikt, Jiri
    Drabek, Pavel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 311 - 315
  • [39] Principal eigenvalue of the p-Laplacian in RN
    Furusho, Y
    Murata, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4749 - 4756
  • [40] The second eigenvalue of the fractional p-Laplacian
    Brasco, Lorenzo
    Parini, Enea
    ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) : 323 - 355