Light-weighted vehicle detection network based on improved YOLOv3-tiny

被引:14
|
作者
Ge, Pingshu [1 ]
Guo, Lie [2 ,3 ]
He, Danni [2 ]
Huang, Liang [2 ]
机构
[1] Dalian Minzu Univ, Coll Mech & Elect Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Automot Engn, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China
[3] Dalian Univ Technol, Ningbo Inst, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent vehicle; vehicle detection; light-weighted network; YOLOv3-tiny; residual network;
D O I
10.1177/15501329221080665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicle detection is one of the most challenging research works on environment perception for intelligent vehicle. The commonly used object detection network is too large and can only be realized in real-time on a high-performance server. Based on YOLOv3-tiny, the feature extraction was realized using light-weighted networks such as DarkNet-19 and ResNet-18 to improve accuracy. The K-means algorithm was used to cluster nine anchor boxes to achieve multi-scale prediction, especially for small targets. For automotive applicable scenarios, the proposed vehicle detection network was executed in an embedded device. The KITTI data sets were trained and tested. Experimental results show that the average accuracy is improved by 14.09% compared with the traditional YOLOv3-tiny, reaching 93.66%, and can reach 13 fps on the embedded device.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Light-Weighted Model of GRU plus CNN Hybrid for Network Intrusion Detection
    Yang, Dong
    Zhou, Can
    Wei, Songjie
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 314 - 326
  • [42] Lightweight Network of Multi-Stage Strawberry Detection Based on Improved YOLOv7-Tiny
    Li, Chenglin
    Wu, Haonan
    Zhang, Tao
    Lu, Jiahuan
    Li, Jiehao
    AGRICULTURE-BASEL, 2024, 14 (07):
  • [43] Vehicle Detection in the Aerial Infrared Images via an Improved Yolov3 Network
    Zhang, Xunxun
    Zhu, Xu
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 372 - 376
  • [44] 基于改进YOLOv3-Tiny的目标检测技术研究
    张陈晨
    靳鸿
    兵器装备工程学报, 2021, 42 (09) : 215 - 218+312
  • [45] YOLOv3-tiny的硬件加速设计及FPGA实现
    陈浩敏
    姚森敬
    席禹
    张凡
    辛文成
    王龙海
    任超
    计算机工程与科学, 2021, 43 (12) : 2139 - 2149
  • [46] 基于YOLOv3-tiny的二轮车头盔检测
    杨国亮
    李世聪
    邹俊峰
    龚家仁
    计算机应用与软件, 2024, 41 (05) : 147 - 152
  • [47] 基于改进YOLOv3-tiny的道路车辆检测算法
    邢镇委
    伋淼
    张梦龙
    洛阳理工学院学报(自然科学版), 2021, 31 (04) : 58 - 63
  • [48] Road vehicle detection based on improved YOLOv3-SPP algorithm
    Wang T.
    Feng H.
    Mi R.
    Li L.
    He Z.
    Fu Y.
    Wu S.
    Tongxin Xuebao/Journal on Communications, 45 (02): : 68 - 78
  • [49] 基于改进YOLOV3-Tiny的海面船舰目标快速检测
    李庆忠
    徐相玉
    计算机工程, 2021, 47 (10) : 283 - 289+297
  • [50] Real-time vehicle detection and tracking based on enhanced Tiny YOLOV3 algorithm
    Liu J.
    Hou S.
    Zhang K.
    Zhang R.
    Hu C.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (08): : 118 - 125