Smoothing parameter selection for power optimality in testing of regression curves

被引:50
|
作者
Kulasekera, KB
Wang, J
机构
关键词
design variables; kernel estimator; nonparametric test;
D O I
10.2307/2965699
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider selection of smoothing parameters to obtain optimal power in tests of regression curves. We examine three tests and propose empirical smoothing parameters to maximize the power in each test. We also show that the data-based smoothing parameters converge to the optimal smoothing parameters as sample sizes gel larger. We conduct a simulation study for various classes of alternative showing the effectiveness of the proposed procedures.
引用
收藏
页码:500 / 511
页数:12
相关论文
共 50 条
  • [31] Selection of smoothing parameter estimators for general regression neural networks - Applications to hydrological and water resources modelling
    Li, Xuyuan
    Zecchin, Aaron C.
    Maier, Holger R.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 59 : 162 - 186
  • [33] Uniform in the smoothing parameter consistency results in functional regression
    Kara-Zaitri, Lydia
    Laksaci, Ali
    Rachdi, Mustapha
    Vieu, Philippe
    FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 161 - 167
  • [34] Beta-Bernstein smoothing for regression curves with compact support
    Brown, BM
    Chen, SX
    SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (01) : 47 - 59
  • [35] Testing for the equality of k regression curves
    Pardo-Fernandez, Juan Carlos
    Van Keilegom, Ingrid
    Gonzalez-Manteiga, Wenceslao
    STATISTICA SINICA, 2007, 17 (03) : 1115 - 1137
  • [36] ON THE OPTIMALITY OF BACKWARD REGRESSION: SPARSE RECOVERY AND SUBSET SELECTION
    Ament, Sebastian
    Gomes, Carla
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5599 - 5603
  • [37] MAKING ROBUST THE CROSS-VALIDATORY CHOICE OF SMOOTHING PARAMETER IN SPLINE SMOOTHING REGRESSION
    ROBINSON, T
    MOYEED, R
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (02) : 523 - 539
  • [38] Component selection and smoothing for nonparametric regression in exponential families
    Zhang, Hao Helen
    Lin, Yi
    STATISTICA SINICA, 2006, 16 (03) : 1021 - 1041
  • [39] Multiple smoothing parameters selection in additive regression quantiles
    Muggeo, Vito M. R.
    Torretta, Federico
    Eilers, Paul H. C.
    Sciandra, Mariangela
    Attanasio, Massimo
    STATISTICAL MODELLING, 2021, 21 (05) : 428 - 448
  • [40] Model selection in regression based on pre-smoothing
    Aerts, Marc
    Hens, Niel
    Simonoff, Jeffrey S.
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (09) : 1455 - 1472