Global existence for a system of weakly coupled nonlinear Schrodinger equations
被引:1
|
作者:
Shu, J.
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu 610066, Peoples R China
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu 610066, Peoples R China
Shu, J.
[1
,2
]
Zhang, J.
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu 610066, Peoples R China
Zhang, J.
[2
]
机构:
[1] Sichuan Normal Univ, Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
This paper discusses the weakly coupled nonlinear Schrodinger equations in the supercritical case. With the best constant of the Gagliardo-Nirenberg inequality, we derive a sufficient condition for the global existence of solutions; this condition is expressed in terms of stationary solutions (nonlinear ground state).
机构:
Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou, Peoples R ChinaGuangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou, Peoples R China
Huang, Meihua
Zhou, Zhan
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
Guangzhou Univ, Guangzhou Ctr Appl Math, Guangzhou, Peoples R ChinaGuangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou, Peoples R China