Regressed Importance Sampling on Manifolds for Efficient Object Tracking

被引:2
|
作者
Porikli, Fatih [1 ]
Pan, Pan [2 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] Univ Illinois, Chicago, IL 60680 USA
关键词
VISUAL TRACKING; MODELS;
D O I
10.1109/AVSS.2009.95
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new integrated particle filter is proposed for video object tracking. After particles are generated by importance sampling, each particle is regressed on the transformation space where the mapping function is learned offline by regression on pose manifold using Lie algebra, leading to a more effective allocation of particles. Experimental results on synthetic and real sequences clearly demonstrate the improved pose (affine) tracking performance of the proposed method compared with the original regression tracker and particle filters.
引用
收藏
页码:406 / +
页数:2
相关论文
共 50 条
  • [31] Efficient simulation of network performance by importance sampling
    Heegaard, PE
    TELETRAFFIC CONTRIBUTIONS FOR THE INFORMATION AGE, 1997, 2 : 623 - 632
  • [32] EFFICIENT IMPORTANCE SAMPLING UNDER PARTIAL INFORMATION
    Lam, Henry
    2012 WINTER SIMULATION CONFERENCE (WSC), 2012,
  • [33] Efficient Storage and Importance Sampling for Fluorescent Reflectance
    Hua, Q.
    Tazlar, V
    Fichet, A.
    Wilkie, A.
    COMPUTER GRAPHICS FORUM, 2023, 42 (01) : 47 - 59
  • [34] EFFICIENT IMPORTANCE SAMPLING FOR BINARY CONTINGENCY TABLES
    Blanchet, Jose H.
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (03): : 949 - 982
  • [35] AN EXPERIMENTAL INVESTIGATION OF CONVENTIONAL AND EFFICIENT IMPORTANCE SAMPLING
    JERUCHIM, MC
    HAHN, PM
    SMYNTEK, KP
    RAY, RT
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (06) : 578 - 587
  • [36] Efficient high-dimensional importance sampling
    Richard, Jean-Francois
    Zhang, Wei
    JOURNAL OF ECONOMETRICS, 2007, 141 (02) : 1385 - 1411
  • [37] On Lyapunov Inequalities and Subsolutions for Efficient Importance Sampling
    Blanchet, Jose
    Glynn, Peter
    Leder, Kevin
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2012, 22 (03):
  • [38] Improving MCMC, using efficient importance sampling
    Liesenfeld, Roman
    Richard, Jean-Francois
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) : 272 - 288
  • [39] Efficient nonparametric importance sampling for Bayesian learning
    Zlochin, M
    Baram, Y
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2498 - 2502
  • [40] Efficient edge-based object tracking
    Zhu, Guopu
    Zeng, Qingshuang
    Wang, Changhong
    PATTERN RECOGNITION, 2006, 39 (11) : 2223 - 2226