Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks

被引:15
|
作者
Colclough, Giles L. [1 ,2 ,3 ]
Woolrich, Mark W. [1 ,2 ]
Harrison, Samuel J. [1 ,2 ]
Rojas Lopez, Pedro A. [4 ]
Valdes-Sosa, Pedro A. [4 ,5 ]
Smith, Stephen M. [2 ]
机构
[1] Univ Oxford, Oxford Ctr Human Brain Act OHBA, Wellcome Ctr Integrat Neuroimaging, Dept Psychiat, Oxford, England
[2] Univ Oxford, Oxford Ctr Funct MRI Brain FMRIB, Wellcome Ctr Integrat Neuroimaging, Nuffield Dept Clin Neurosci, Oxford, England
[3] Dept Engn Univ Oxford, Ctr Doctoral Training Healthcare Innovat, Inst Biomed Engn Sci, Oxford, England
[4] Ctr Neurociencias Cuba CNEURO, Neuroinformat Dept, Havana, Cuba
[5] Univ Elect Sci & Technol China, Clin Hosp Chengdu Brain Sci Inst, MOE Key Lab Neuroinformat, Chengdu, Sichuan, Peoples R China
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
fMRI; MEG; Functional connectivity; Gaussian Graphical models; Hierarchical Bayesian models; Concentration graph; Precision model; Inverse covariance model; MCMC; HUMAN CONNECTOME PROJECT; INDEPENDENT COMPONENT ANALYSIS; SPARSE PARTIAL CORRELATION; GAUSSIAN GRAPHICAL MODELS; RESTING STATE NETWORKS; PRIOR DISTRIBUTIONS; WISHART DISTRIBUTIONS; VARIABLE SELECTION; CEREBRAL-CORTEX; ELASTIC NET;
D O I
10.1016/j.neuroimage.2018.04.077
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity.
引用
收藏
页码:370 / 384
页数:15
相关论文
共 50 条
  • [21] A multi-subject and multi-session EEG dataset for modelling human visual object recognition
    Shuning Xue
    Bu Jin
    Jie Jiang
    Longteng Guo
    Jin Zhou
    Changyong Wang
    Jing Liu
    Scientific Data, 12 (1)
  • [22] Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity
    Gorrostieta, Cristina
    Fiecas, Mark
    Ombao, Hernando
    Burke, Erin
    Cramer, Steven
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7
  • [23] Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm
    Yamashita, Okito
    Shimokawa, Takeaki
    Aisu, Ryota
    Amita, Takashi
    Inoue, Yoshihiro
    Sato, Masa-aki
    NEUROIMAGE, 2016, 135 : 287 - 299
  • [24] Enhancing Multi-Subject Vital Sign Estimation by Utilizing the Generalized Sidelobe Canceller
    Moadi, Abdel-Kareem
    Bauder, Chandler
    Djouadi, Abdel-Hamid
    Theilmann, Paul
    Fathy, Aly E.
    2024 IEEE TOPICAL CONFERENCE ON WIRELESS SENSORS AND SENSOR NETWORKS, WISNET, 2024, : 26 - 29
  • [25] Estimation of covariance matrices based on hierarchical inverse-Wishart priors
    Bouriga, M.
    Feron, O.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (04) : 795 - 808
  • [27] Quantifying functional connectivity in multi-subject fMRI data using component models
    Madsen, Kristoffer H.
    Churchill, Nathan W.
    Morup, Morten
    HUMAN BRAIN MAPPING, 2017, 38 (02) : 882 - 899
  • [28] A predictor-informed multi-subject bayesian approach for dynamic functional connectivity
    Lee, Jaylen
    Hussain, Sana
    Warnick, Ryan
    Vannucci, Marina
    Menchaca, Isaac
    Seitz, Aaron R.
    Hu, Xiaoping
    Peters, Megan A. K.
    Guindani, Michele
    PLOS ONE, 2024, 19 (05):
  • [29] Robust brain network identification from multi-subject asynchronous fMRI data
    Li, Jian
    Wisnowski, Jessica L.
    Joshi, Anand A.
    Leahy, Richard M.
    NEUROIMAGE, 2021, 227
  • [30] Automated multi-subject fiber clustering of mouse brain using dominant sets
    Dodero, Luca
    Vascon, Sebastiano
    Murino, Vittorio
    Bifone, Angelo
    Gozzi, Alessandro
    Sona, Diego
    FRONTIERS IN NEUROINFORMATICS, 2015, 8