Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks

被引:15
|
作者
Colclough, Giles L. [1 ,2 ,3 ]
Woolrich, Mark W. [1 ,2 ]
Harrison, Samuel J. [1 ,2 ]
Rojas Lopez, Pedro A. [4 ]
Valdes-Sosa, Pedro A. [4 ,5 ]
Smith, Stephen M. [2 ]
机构
[1] Univ Oxford, Oxford Ctr Human Brain Act OHBA, Wellcome Ctr Integrat Neuroimaging, Dept Psychiat, Oxford, England
[2] Univ Oxford, Oxford Ctr Funct MRI Brain FMRIB, Wellcome Ctr Integrat Neuroimaging, Nuffield Dept Clin Neurosci, Oxford, England
[3] Dept Engn Univ Oxford, Ctr Doctoral Training Healthcare Innovat, Inst Biomed Engn Sci, Oxford, England
[4] Ctr Neurociencias Cuba CNEURO, Neuroinformat Dept, Havana, Cuba
[5] Univ Elect Sci & Technol China, Clin Hosp Chengdu Brain Sci Inst, MOE Key Lab Neuroinformat, Chengdu, Sichuan, Peoples R China
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
fMRI; MEG; Functional connectivity; Gaussian Graphical models; Hierarchical Bayesian models; Concentration graph; Precision model; Inverse covariance model; MCMC; HUMAN CONNECTOME PROJECT; INDEPENDENT COMPONENT ANALYSIS; SPARSE PARTIAL CORRELATION; GAUSSIAN GRAPHICAL MODELS; RESTING STATE NETWORKS; PRIOR DISTRIBUTIONS; WISHART DISTRIBUTIONS; VARIABLE SELECTION; CEREBRAL-CORTEX; ELASTIC NET;
D O I
10.1016/j.neuroimage.2018.04.077
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity.
引用
收藏
页码:370 / 384
页数:15
相关论文
共 50 条
  • [1] Estimating dynamic brain functional networks using multi-subject fMRI data
    Kundu, Suprateek
    Ming, Jin
    Pierce, Jordan
    McDowell, Jennifer
    Guo, Ying
    NEUROIMAGE, 2018, 183 : 635 - 649
  • [2] MULTI-SUBJECT JOINT PARCELLATION DETECTION ESTIMATION IN FUNCTIONAL MRI
    Albughdadi, Mohanad
    Chaari, Lotfi
    Forbes, Florence
    Tourneret, Jean-Yves
    Ciuciu, Philippe
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 74 - 77
  • [3] A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies
    Degras, David
    Lindquist, Martin A.
    NEUROIMAGE, 2014, 98 : 61 - 72
  • [4] Bayesian hierarchical multi-subject multiscale analysis of functional MRI data
    Sanyal, Nilotpal
    Ferreira, Marco A. R.
    NEUROIMAGE, 2012, 63 (03) : 1519 - 1531
  • [5] Multi-modal and multi-subject modular organization of human brain networks
    Puxeddu, Maria Grazia
    Faskowitz, Joshua
    Sporns, Olaf
    Astolfi, Laura
    Betzel, Richard F.
    NEUROIMAGE, 2022, 264
  • [6] Deriving a Multi-subject Functional-Connectivity Atlas to Inform Connectome Estimation
    Phlypo, Ronald
    Thirion, Bertrand
    Varoquaux, Gael
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT III, 2014, 8675 : 185 - 192
  • [7] Modelling hierarchical structure in functional brain networks
    Gleiser, Pablo M.
    Spoormaker, Victor I.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1933): : 5633 - 5644
  • [8] A multi-subject, dynamic Bayesian networks (DBNS) framework for brain effective connectivity
    Li, Junning
    Wang, Z. Jane
    McKeown, Martin J.
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 429 - +
  • [9] Multi-subject Bayesian Joint Detection and Estimation in fMRI
    Badillo, Solveig
    Desmidt, Severine
    Ginisty, Chantal
    Ciuciu, Philippe
    2014 INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING, 2014,
  • [10] Change point estimation in multi-subject fMRI studies
    Robinson, Lucy F.
    Wager, Tor D.
    Lindquist, Martin A.
    NEUROIMAGE, 2010, 49 (02) : 1581 - 1592