Response of a proton exchange membrane fuel cell to step changes in mass flow rates

被引:6
|
作者
Kupeli, Seda [1 ]
Celik, Erman [2 ]
Karagoz, Irfan [1 ]
机构
[1] Uludag Univ, Engn Fac, Mech Engn Dept, TR-16059 Bursa, Turkey
[2] Firat Univ, Fac Technol, Mech Engn Dept, Elazig, Turkey
关键词
computational fluid dynamics; fuel cell; modeling; proton exchange membrane; step response; time constant; PERFORMANCE; CHANNEL; DESIGN; TRANSPORT; PEMFC;
D O I
10.1002/fuce.202000170
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Transient regime effects are particularly important in fuel cells designed for vehicles. Three-dimensional modeling of a proton exchange membrane fuel cell with a serpentine channel is presented, and the response of the fuel cell to a step-change in the mass flow rates is analyzed by using the computational fluid dynamics techniques. After a validation study of the mathematical and numerical model, step increases of 20% in mass flow rates are applied to the inlet boundary conditions, and time dependent power and current density responses of the fuel cell are analyzed. Polarization curves are generated for the assessment of the fuel cell performance, and their variations in time are presented. The results show that current and power densities increase with time at low cell voltage values due to concentration losses; however, increases in power and current are negligible at high voltages.
引用
收藏
页码:338 / 346
页数:9
相关论文
共 50 条
  • [41] Numerical analysis of flow distribution behavior in a proton exchange membrane fuel cell
    Lim, B. H.
    Majlan, E. H.
    Daud, W. R. W.
    Rosli, M., I
    Husaini, T.
    HELIYON, 2018, 4 (10):
  • [42] Dynamic response of proton exchange membrane fuel cell under mechanical vibration
    Wang, Xueke
    Wang, Shubo
    Chen, Sitong
    Zhu, Tong
    Xie, Xiaofeng
    Mao, Zhiming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (36) : 16287 - 16295
  • [43] FUEL 92-Proton exchange membrane for fuel cell
    Sharif, Iqbal
    Jiang, Wanchao
    DesMarteau, Darryl D.
    Creager, Stephen E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236
  • [44] Analysis of proton exchange membrane fuel cell performance with a new generation of proton exchange membrane
    Hu, J
    Zhou, LR
    Zhu, Y
    Li, W
    Li, Z
    Niu, SP
    Lu, L
    Zhang, WX
    He, Y
    HYDROGEN ENERGY PROGRESS XIII, VOLS 1 AND 2, PROCEEDINGS, 2000, : 821 - 825
  • [45] Dynamic response and stability performance of a proton exchange membrane fuel cell with orientational flow channels: An experimental investigation
    Guo, Zi Rui
    Chen, Hao
    Guo, Hang
    Ye, Fang
    ENERGY CONVERSION AND MANAGEMENT, 2022, 274
  • [46] Gradient Membrane Electrode of Proton Exchange Membrane Fuel Cell
    Zheng J.
    Dai N.
    Wang Q.
    Zhu S.
    Zheng J.
    Tongji Daxue Xuebao/Journal of Tongji University, 2018, 46 : 228 - 236
  • [47] Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell
    Jiao, Kui
    Bachman, John
    Zhou, Yibo
    Park, Jae Wan
    APPLIED ENERGY, 2014, 115 : 75 - 82
  • [48] Performance of a membrane humidifier for a proton exchange membrane fuel cell
    Li Z.-Y.
    Li N.
    Li Q.-Y.
    Bao C.
    Teng Y.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (06): : 1090 - 1097
  • [49] Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell
    Hwang, Byungchan
    Chung, Hoi-Bum
    Lee, Moo-Seok
    Lee, Dong-Hoon
    Park, Kwonpil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2016, 54 (05): : 593 - 597
  • [50] Mass Transports in an Air-Breathing Cathode of a Proton Exchange Membrane Fuel Cell
    Hwang, J. J.
    Chang, W. R.
    Chao, C. H.
    Weng, F. B.
    Su, A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (04): : 0410031 - 0410037