Evidence theory for image segmentation using information from stochastic Watershed and Hessian filtering

被引:0
|
作者
Chahine, Chaza [1 ,2 ]
El Berbari, Racha [2 ]
Lagorre, Corinne [1 ]
Nakib, Amir [1 ]
Petit, Eric [1 ]
机构
[1] Univ Paris Est, Lab Image Signal & Intelligent Syst, F-94000 Creteil, France
[2] Lebanese Univ, Doctoral Sch Sci & Technol, Beirut 1003, Lebanon
关键词
Image Segmentation; Stochastic Watershed; Hessian Operator; Frobenius Norm; EvidenceTheory; Dempster's Combination Rule;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper; a new segmentation method is presented. It combines the probability density function of the stochastic Watershed and the Frobenius norm of the Hessian operator under the evidence theory framework. The first step of this method is a classification of the values provided by these two sources of information into five classes. Then, a predefined belief scheme is used to assign masses to pixels in each class. The segmentation result is obtained after beliefs fusion using the Dempster's rule of combination. The method is designed for twolabel segmentation, contour and non-contour. Experimental results on a set of images from the Berkeley dataset, shows the ability of this method to yield a good segmentation compared to the given ground truths.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [1] Information fusion for unsupervised image segmentation using stochastic watershed and Hessian matrix
    Chahine, Chaza
    Vachier-Lagorre, Corinne
    Chenoune, Yasmina
    El Berbari, Racha
    El Fawal, Ziad
    Petit, Eric
    IET IMAGE PROCESSING, 2018, 12 (04) : 525 - 531
  • [2] Improved watershed transform for medical image segmentation using prior information
    Grau, V
    Mewes, AUJ
    Alcañiz, M
    Kikinis, R
    Warfield, SK
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (04) : 447 - 458
  • [3] Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed
    Angulo, Jesus
    Velasco-Forero, Santiago
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [4] Watershed Segmentation Using Curvelet and Morphological Filtering
    Chen, Dongfang
    Xu, Tao
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1893 - 1897
  • [5] MULTISCALE STOCHASTIC WATERSHED FOR UNSUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION
    Angulo, J.
    Velasco-Forero, S.
    Chanussot, J.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1395 - 1398
  • [6] Bagging Stochastic Watershed on Natural Color Image Segmentation
    Franchi, Gianni
    Angulo, Jesus
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING, 2015, 9082 : 422 - 433
  • [7] Shape gradient for image segmentation using information theory
    Herbulot, A
    Jehan-Besson, S
    Barlaud, M
    Aubert, G
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 21 - 24
  • [8] Random germs and stochastic watershed for unsupervised multispectral image segmentation
    Noyel, Guillaume
    Angulo, Jesus
    Jeulin, Dominique
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT III, PROCEEDINGS, 2007, 4694 : 17 - +
  • [9] Statistical Gaussian Model of Image Regions in Stochastic Watershed Segmentation
    Angulo, Jesus
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 396 - 405
  • [10] Image Segmentation Using an Improved Watershed Algorithm
    郭礼华
    李建华
    杨树堂
    陆松年
    JournalofShanghaiJiaotongUniversity, 2004, (02) : 16 - 19