Information fusion for unsupervised image segmentation using stochastic watershed and Hessian matrix

被引:13
|
作者
Chahine, Chaza [1 ,2 ]
Vachier-Lagorre, Corinne [1 ]
Chenoune, Yasmina [3 ]
El Berbari, Racha [2 ]
El Fawal, Ziad [2 ]
Petit, Eric [1 ]
机构
[1] Univ Paris Est, LISSI, Creteil, France
[2] Lebanese Univ, Doctoral Sch Sci & Technol, Beirut, Lebanon
[3] ESME Sudria, Lab Ingn Syst Traitement Informat, Ivry, France
关键词
Hessian matrices; image segmentation; unsupervised learning; Information fusion; unsupervised image segmentation; stochastic watershed; Hessian matrix; Berkeley dataset; RULE;
D O I
10.1049/iet-ipr.2017.0798
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study deals with information fusion for image segmentation. The evidence theory (or the Dempster-Shafer theory) allows the modellisation of uncertainty and imprecision in the information as well as the combination of different sources. Here, this approach is used in an unsupervised framework to combine the stochastic watershed segmentation which provides several segmentation results, with a Hessian operator in order to obtain a unique and efficient segmentation. The method is tested on natural images from the Berkeley dataset and evaluated using several evaluation metrics. The fusion results surpass those obtained with stochastic watershed alone.
引用
收藏
页码:525 / 531
页数:7
相关论文
共 50 条
  • [1] Evidence theory for image segmentation using information from stochastic Watershed and Hessian filtering
    Chahine, Chaza
    El Berbari, Racha
    Lagorre, Corinne
    Nakib, Amir
    Petit, Eric
    2015 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2015), 2015, : 141 - 144
  • [2] MULTISCALE STOCHASTIC WATERSHED FOR UNSUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION
    Angulo, J.
    Velasco-Forero, S.
    Chanussot, J.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1395 - 1398
  • [3] Random germs and stochastic watershed for unsupervised multispectral image segmentation
    Noyel, Guillaume
    Angulo, Jesus
    Jeulin, Dominique
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT III, PROCEEDINGS, 2007, 4694 : 17 - +
  • [4] Unsupervised image segmentation by stochastic reconstruction
    Metzler, V
    Vandenhouten, R
    Krone, J
    Grebe, R
    MEDICAL IMAGING 1998: IMAGE PROCESSING, PTS 1 AND 2, 1998, 3338 : 575 - 586
  • [5] Crack segmentation in CT image sequences using Hessian matrix and entropy
    Wang, Jue (wangjue@cqu.edu.cn), 1800, Science Press (37):
  • [6] Unsupervised SAR Image Segmentation Using Ambiguity Label Information Fusion in Triplet Markov Fields Model
    Wang, Fan
    Wu, Yan
    Zhang, Peng
    Zhang, Qingjun
    Li, Ming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (09) : 1479 - 1483
  • [7] Unsupervised texture segmentation using stochastic version of the EM algorithm and data fusion
    Cruz, CA
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 1005 - 1009
  • [8] Visual information fusion for object-based video image segmentation using unsupervised Bayesian online learning
    Jia, Z.
    Balasuriya, A.
    Challa, S.
    IET IMAGE PROCESSING, 2007, 1 (02) : 168 - 181
  • [9] Improved watershed transform for medical image segmentation using prior information
    Grau, V
    Mewes, AUJ
    Alcañiz, M
    Kikinis, R
    Warfield, SK
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (04) : 447 - 458
  • [10] Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed
    Angulo, Jesus
    Velasco-Forero, Santiago
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695