NETSPEAK: An algebraic modelling language for nonconvex network optimization problems

被引:0
|
作者
Lamar, BW [1 ]
Wallace, CA [1 ]
机构
[1] Univ Canterbury, Dept Management, Christchurch 1, New Zealand
来源
NETWORK OPTIMIZATION | 1997年 / 450卷
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
NETSPEAK is an algebraic modelling language used to specify, solve, and analyze nonconvex (or linear) minimum cost network flow problems. A wide variety of network and network-related topologies can be modelled using NETSPEAK including pure networks, networks with side constraints and/or side variables, and generalized networks. Problems involving price based decomposition and integer valued variables can also be modelled using NETSPEAK. The language, which features flexible input/output, robust program control, and intuitive commands, is being developed as a Windows(TM) application.
引用
收藏
页码:328 / 345
页数:18
相关论文
共 50 条
  • [31] Solution of Nonconvex Nonsmooth Stochastic Optimization Problems
    Yu. M. Ermoliev
    V. I. Norkin
    Cybernetics and Systems Analysis, 2003, 39 (5) : 701 - 715
  • [32] ON PERTURBATIONS OF CERTAIN NONCONVEX OPTIMIZATION PROBLEMS.
    Deumlich, R.
    Elster, K.H.
    1600, (48):
  • [33] A Note on the Existence of Nonsmooth Nonconvex Optimization Problems
    Ito, Kazufumi
    Kunisch, Karl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) : 697 - 706
  • [34] Criteria for unconstrained global optimization in nonconvex problems
    Demidenko, Eugene
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 147 - 150
  • [35] ON THE STABILITY THEORY IN NONCONVEX INFINITE OPTIMIZATION PROBLEMS
    Zhao, Xiaopeng
    Fangi, Donghui
    Wen, Ching-Feng
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (06) : 1115 - 1127
  • [36] Global optimization of nonconvex factorable programming problems
    Hanif D. Sherali
    Hongjie Wang
    Mathematical Programming, 2001, 89 : 459 - 478
  • [37] A GENERALIZATION OF THE CONSTRUCTION OF TEST PROBLEMS FOR NONCONVEX OPTIMIZATION
    MOSHIRVAZIRI, K
    JOURNAL OF GLOBAL OPTIMIZATION, 1994, 5 (01) : 21 - 34
  • [38] Global optimization of nonconvex problems with multilinear intermediates
    Bao X.
    Khajavirad A.
    Sahinidis N.V.
    Tawarmalani M.
    Mathematical Programming Computation, 2015, 7 (1) : 1 - 37
  • [39] A Note on the Existence of Nonsmooth Nonconvex Optimization Problems
    Kazufumi Ito
    Karl Kunisch
    Journal of Optimization Theory and Applications, 2014, 163 : 697 - 706
  • [40] Algebraic methods for optimization problems
    Bird, R
    Gibbons, J
    Mu, SC
    ALGEBRAIC AND COALGEBRAIC METHODS IN THE MATHEMATICS OF PROGRAM CONSTRUCTION, 2002, 2297 : 281 - 308