Methodology for efficient parametrisation of electrochemical PEMFC model for virtual observers: Model based optimal design of experiments supported by parameter sensitivity analysis

被引:16
|
作者
Kravos, Andraz [1 ]
Ritzberger, Daniel [2 ]
Hametner, Christoph [3 ]
Jakubek, Stefan [2 ]
Katrasnik, Tomaz [1 ]
机构
[1] Univ Ljubljana, Fac Mech Engn, LICeM, Ljubljana, Slovenia
[2] TU Wien, Inst Mech & Mechatron, Vienna, Austria
[3] TU Wien, CD Lab Innovat Control & Monitoring Automot Power, Vienna, Austria
关键词
PEM fuel cells; Electrochemical PEM FC; performance model; Model-based design of experiments; Reduced dimensionality models; Parameter sensitivity; Virtual observers; FUEL-CELL; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.ijhydene.2020.10.146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Determination of the optimal design of experiments that enables efficient parametrisation of fuel cell (FC) model with a minimum parametrisation data-set is one of the key prerequisites for minimizing costs and effort of the parametrisation procedure. To efficiently tackle this challenge, the paper present an innovative methodology based on the electrochemical FC model, parameter sensitivity analysis and application of D-optimal design plan. Relying on this consistent methodological basis the paper answers fundamental questions: a) on a minimum required data-set to optimally parametrise the FC model and b) on the impact of reduced space of operational points on identifiability of individual calibration parameters. Results reveal that application of D-optimal DoE enables enhancement of calibration parameters information resulting in up to order of magnitude lower relative standard errors on smaller data-sets. In addition, it was shown that increased information and thus identifiability, inherently leads to improved robustness of the FC electrochemical model. (c) 2020 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:13832 / 13844
页数:13
相关论文
共 50 条
  • [21] Efficient online model-based design of experiments via parameter subset selection for batch dynamical systems
    Kim, Jung Hun
    Lee, Jong Min
    COMPUTERS & CHEMICAL ENGINEERING, 2019, 121 : 646 - 653
  • [22] Sensitivity Analysis of a Tax Evasion Model Applying Automated Design of Experiments
    Szabo, Attila
    Gulyas, Laszlo
    Toth, Istvan Janos
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5816 : 572 - +
  • [23] Prediction model-based sensitivity analysis in virtual experiment
    Jiang, Zhen-Yu
    Zhang, Wei-Hua
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (11): : 3059 - 3061
  • [24] Parameter Acquirement Methods for Rule-based Model of Virtual Plant Based on Optimal Algorithms
    Ding, Weilong
    Xu, Lifeng
    Hu, Chen
    Zhang, Yuping
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 748 - 752
  • [25] SEQUENTIAL DESIGN OF EXPERIMENTS FOR OPTIMAL-MODEL DISCRIMINATION AND PARAMETER-ESTIMATION IN ISOPROPANOL DEHYDRATION
    GONZALEZVELASCO, JR
    GONZALEZMARCOS, JA
    ROMERO, A
    CHEMICAL ENGINEERING SCIENCE, 1991, 46 (08) : 2161 - 2166
  • [26] Design and analysis of climate model experiments for the efficient estimation of anthropogenic signals
    Sexton, DMH
    Grubb, H
    Shine, KP
    Folland, CK
    JOURNAL OF CLIMATE, 2003, 16 (09) : 1320 - 1336
  • [27] Sequential Parameter Estimation for Mammalian Cell Model Based on In Silico Design of Experiments
    Wang, Zhenyu
    Sheikh, Hana
    Lee, Kyongbum
    Georgakis, Christos
    PROCESSES, 2018, 6 (08):
  • [28] Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries
    Li, Weihan
    Cao, Decheng
    Joest, Dominik
    Ringbeck, Florian
    Kuipers, Matthias
    Frie, Fabian
    Sauer, Dirk Uwe
    APPLIED ENERGY, 2020, 269
  • [29] Parameter Sensitivity Analysis for A Thermal Coupling Simplified Electrochemical Model and Health Feature Extraction
    Li, Junfu
    Wang, Dafang
    Zhang, Qi
    Wang, Jingwei
    Cai, Jinyi
    Tang, Zhihao
    Wang, Lixin
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [30] The Simplifying for PEEC Model of DC Bus Based on Parameter Sensitivity Analysis
    Li, Fangzheng
    Sun, Xudong
    Huang, Lipei
    Jiang, Jianguo
    PIERS 2009 MOSCOW VOLS I AND II, PROCEEDINGS, 2009, : 390 - 394