A Spatio-Temporal Local Association Query Algorithm for Multi-Source Remote Sensing Big Data

被引:1
|
作者
Zhu, Lilu [1 ]
Su, Xiaolu [2 ]
Hu, Yanfeng [2 ,3 ]
Tai, Xianqing [4 ]
Fu, Kun [4 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Elect, Suzhou 215123, Peoples R China
[3] Key Lab Intelligent Aerosp Big Data Applicat Tech, Suzhou 215123, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
关键词
multi-source remote sensing big data; self-correlation network; cross-correlation network; multi-dimensional index;
D O I
10.3390/rs13122333
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is extremely important to extract valuable information and achieve efficient integration of remote sensing data. The multi-source and heterogeneous nature of remote sensing data leads to the increasing complexity of these relationships, and means that the processing mode based on data ontology cannot meet requirements any more. On the other hand, the multi-dimensional features of remote sensing data bring more difficulties in data query and analysis, especially for datasets with a lot of noise. Therefore, data quality has become the bottleneck of data value discovery, and a single batch query is not enough to support the optimal combination of global data resources. In this paper, we propose a spatio-temporal local association query algorithm for remote sensing data (STLAQ). Firstly, we design a spatio-temporal data model and a bottom-up spatio-temporal correlation network. Then, we use the method of partition-based clustering and the method of spectral clustering to measure the correlation between spatio-temporal correlation networks. Finally, we construct a spatio-temporal index to provide joint query capabilities. We carry out local association query efficiency experiments to verify the feasibility of STLAQ on multi-scale datasets. The results show that the STLAQ weakens the barriers between remote sensing data, and improves their application value effectively.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Spatio-temporal evolution and driving factors of new urbanization in central China based on multi-source data
    An, Yu
    Peng, Lingtong
    Geng, Liang
    PLOS ONE, 2024, 19 (03):
  • [42] Spatio-Temporal Event Forecasting Using Incremental Multi-Source Feature Learning
    Zhao, Liang
    Gao, Yuyang
    Ye, Jieping
    Chen, Feng
    Ye, Yanfang
    Lu, Chang-Tien
    Ramakrishnan, Naren
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (02)
  • [43] Cymo: A Storage Model with Query-Aware Indexing for Spatio-Temporal Big Data
    Guo, Yang
    Shao, Zili
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 122 - 132
  • [44] Multi-source remote sensing data fusion: status and trends
    Zhang, Jixian
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2010, 1 (01) : 5 - 24
  • [45] Multi-source remote sensing data fusion in human settlements
    Dang, Anrong
    Mao, Qizhi
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2000, 40 (09): : 7 - 10
  • [46] Multi-source remote sensing image big data classification system design in cloud computing environment
    Tong X.-Y.
    Guo C.
    Cheng H.
    International Journal of Internet Manufacturing and Services, 2020, 7 (1-2) : 130 - 145
  • [47] A NEW BP NEURAL NETWORK FUSION ALGORITHM FOR MULTI-SOURCE REMOTE SENSING DATA ON GROUNDWATER
    Zhang, F.
    Xue, H. F.
    Zhang, Y. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (04): : 9083 - 9095
  • [48] Temporal dynamic analysis of a mountain ecosystem based on multi-source and multi-scale remote sensing data
    Ibarrola-Ulzurrun, Edurne
    Marcello, Javier
    Gonzalo-Martin, Consuelo
    Luis Martin-Esquivel, Jose
    ECOSPHERE, 2019, 10 (06):
  • [49] Spatio-Temporal Association Query Algorithm for Massive Video Surveillance Date in Smart Campus
    Zhang, Jiwei
    IEEE ACCESS, 2018, 6 : 59871 - 59880
  • [50] A Novel "Ghost City" Phenomenon Identification Approach Based on Multi-source and Multi temporal Remote Sensing Data
    Ma, Xiaolong
    Li, Chengming
    Tong, Xiaohua
    Liu, Sicong
    Zheng, Shouzhu
    2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,