SOME NEW SCALES OF REFINED JENSEN AND HARDY TYPE INEQUALITIES

被引:7
|
作者
Abramovich, S. [1 ]
Persson, L. E. [2 ,3 ]
Samko, N. [2 ,4 ]
机构
[1] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
[2] Lulea Univ Technol, Dept Engn Sci & Math, SE-971871 Lulea, Sweden
[3] Narvik Univ Coll, N-8505 Narvik, Norway
[4] Inst Super Tecn, Ctr CEAF, Dept Math, P-1049003 Lisbon, Portugal
来源
关键词
Inequalities; refined Hardy type inequalities; refined Jensen type inequalities; convex functions; gamma-quasiconvex functions;
D O I
10.7153/mia-17-82
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some scales of refined Jensen and Hardy type inequalities are derived and discussed. The key object in our technique is gamma-quasiconvex functions K(x) defined by K(x) x(-gamma) = phi (x), where phi is convex on [0, b), 0 < b <= infinity and gamma >= 0.
引用
收藏
页码:1105 / 1114
页数:10
相关论文
共 50 条
  • [41] New Jensen-type inequalities
    Niculescu, Constantin P.
    Spiridon, Catalin Irinel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 343 - 348
  • [42] SOME WEIGHTED DYNAMIC INEQUALITIES OF HARDY TYPE WITH KERNELS ON TIME SCALES NABLA CALCULUS
    Awwad, Essam
    Saied, A. I.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 457 - 475
  • [43] Some Hardy-type inequalities
    Cheung, WS
    Hanjs, Z
    Pecaric, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 621 - 634
  • [44] Some Hardy type integral inequalities
    Sulaiman, W. T.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 520 - 525
  • [45] Hardy-Leindler Type Inequalities on Time Scales
    Saker, S. H.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (06): : 2975 - 2981
  • [46] HARDY-KNOPP-TYPE INEQUALITIES ON TIME SCALES
    Ozkan, Umut Mutlu
    Yildirim, Hueseyin
    DYNAMIC SYSTEMS AND APPLICATIONS, 2008, 17 (3-4): : 477 - 486
  • [47] REFINED MULTIDIMENSIONAL HARDY-TYPE INEQUALITIES VIA SUPERQUADRACITY
    Oguntuase, J. A.
    Persson, L. -E.
    Essel, E. K.
    Popoola, B. A.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 129 - 139
  • [48] Some new Hardy inequalities in probability
    Lu, Dawei
    Liu, Qing
    FILOMAT, 2023, 37 (21) : 7311 - 7318
  • [49] Some new iterated Hardy-type inequalities: the case θ=1
    Gogatishvili, Amiran
    Mustafayev, Rza
    Persson, Lars-Erik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [50] Hardy type inequalities with kernels: The current status and some new results
    Kufner, Alois
    Persson, Lars-Erik
    Samko, Natasha
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (01) : 57 - 65