Development of a Gas-Fed Plasma Source for Pulsed High-Density Plasma/Material Interaction Studies

被引:4
|
作者
Pachuilo, Michael V. [1 ]
Stefani, Francis [2 ]
Raja, Laxminarayan L. [1 ,2 ]
Bengtson, Roger D. [3 ]
Henkelman, Graeme A. [4 ]
Tas, A. Cuneyt [5 ]
Kriven, Waltraud M. [5 ]
Suraj, Kumar Sinha [6 ]
机构
[1] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
[2] Univ Texas Austin, Ctr Aeromech Res, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[5] Univ Illinois, Dept Mat Sci & Engn, Champaign, IL 61801 USA
[6] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
关键词
Arc discharge; atmospheric discharge; capillary discharge; plasma-material interaction; pulsed thermal plasma; CAPILLARY DISCHARGE;
D O I
10.1109/TPS.2014.2344974
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A gas-fed capillary plasma source has been developed to study plasma-surface interactions under pulsed high pressure arc conditions, without the use of an exploding fuse wire or ablative liner. A nonintrusive preionization source has been developed to break down relatively large interelectrode gaps at low charge voltages of 2-6 kV. The preionization source comprises a nonequilibrium surface streamer discharge that forms a conducting channel through which the main thermal arc discharge is initiated. The arc electron temperature and number density are estimated to be T-e similar to 1-2 eV and n(e) similar to 10(23) m(-3). Silicon and sapphire samples were exposed to the arc plasma and revealed deposition of electrode and wall materials. Substitution of Elkonite 50W3 for brass electrodes reduced plasma contamination to acceptable levels. The plasma-material interactions were examined and quantified using scanning electron microscopy and energy dispersive X-ray spectroscopy.
引用
收藏
页码:3245 / 3252
页数:8
相关论文
共 50 条
  • [31] Development of a tubular high-density plasma reactor for water treatment
    Johnson, DC
    Dandy, DS
    Shamamian, VA
    WATER RESEARCH, 2006, 40 (02) : 311 - 322
  • [32] Dynamics of high-density θ-pinch plasma driven by a spinning gas-puff plasma annulus
    Mirza, AM
    Yu, MY
    Ahmad, I
    PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (03) : 393 - 402
  • [33] Dynamics of high-density θ-pinch plasma driven by a spinning gas-puff plasma annulus
    Ruhr-Universitaet Bochum, Bochum, Germany
    Plasma Phys Controlled Fusion, 3 (393-402):
  • [34] Design and characterization of the Magnetized Plasma Interaction Experiment (MAGPIE): a new source for plasma-material interaction studies
    Blackwell, Boyd D.
    Caneses, Juan Francisco
    Samuell, Cameron M.
    Wach, John
    Howard, John
    Corr, Cormac
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (05):
  • [35] A dc plasma source for plasma-material interaction experiments
    Matlock, T. S.
    Goebel, D. M.
    Conversano, R.
    Wirz, R. E.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (02):
  • [36] DISINTEGRATION OF PHOSPHATIDYLCHOLINE LIPOSOMES IN PLASMA AS A RESULT OF INTERACTION WITH HIGH-DENSITY LIPOPROTEINS
    SCHERPHOF, G
    ROERDINK, F
    WAITE, M
    PARKS, J
    BIOCHIMICA ET BIOPHYSICA ACTA, 1978, 542 (02) : 296 - 307
  • [37] INTERACTION OF A RELATIVISTIC ELECTRON-BEAM WITH A BOUNDED HIGH-DENSITY PLASMA
    SHANNON, J
    KORN, P
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 888 - 888
  • [38] RABBIT PLASMA HIGH-DENSITY LIPOPROTEIN
    SAVAGE, JK
    YEATES, RA
    MACKINNON, AM
    CALVERT, GD
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 1980, 7 (01) : 94 - 94
  • [39] A method for high-density plasma production
    Gerasimov, S.I.
    Zotov, E.V.
    Korotchenko, M.V.
    Krasovskij, G.B.
    Kholin, S.A.
    Fizika Goreniya i Vzryva, 1993, 29 (06): : 113 - 114
  • [40] METHOD FOR OBTAINING HIGH-DENSITY PLASMA
    GERASIMOV, SI
    ZOTOV, EV
    KOROTCHENKO, MV
    KRASOVSKII, GB
    KHOLIN, SA
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1993, 29 (06) : 774 - 775