Modelling and uncertainty analysis of Seebeck coefficient measurements by using the finite element method

被引:1
|
作者
Huang, K. [1 ]
Edler, F. [1 ]
Haupt, S. [1 ]
Ziolkowski, P. [2 ]
Stiewe, C. [2 ]
Mueller, E. [2 ,3 ]
机构
[1] Phys Tech Bundesanstalt, Abbestr 2-12, D-10587 Berlin, Germany
[2] German Aerosp Ctr, Inst Mat Res, D-51147 Cologne, Germany
[3] Justus Liebig Univ Giessen, Inst Inorgan & Analyt Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
关键词
Seebeck coefficient; Finite element method; Measurement uncertainty; Transient thermovoltage; Finger effect;
D O I
10.1016/j.matpr.2020.09.158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work is focused on the determination of single uncertainty contributions of Seebeck coefficient measurements of semiconducting bulk materials. Different simulations are performed to quantitatively explore effects and their influence on the measurement uncertainty. The following effects are studied by the finite element method (FEM): the choice of data sets from transient thermoelectric signals, the influence of asynchronous voltage and temperature measurements, and the so called "finger" effect, which represents the falsification of a measurement caused by the contact resistance between a sensor and a sample. The FEM allows the exploration of the data space under ideal conditions, which are hardly obtainable in real experiments. The results of the simulations are used to quantify the corresponding uncertainty contributions. (c) 2019 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the 17th European Thermoelectric Conference.
引用
收藏
页码:3500 / 3505
页数:6
相关论文
共 50 条
  • [21] Modelling of SFRC using inverse finite element analysis
    H. Tlemat
    K. Pilakoutas
    K. Neocleous
    Materials and Structures, 2006, 39 : 221 - 233
  • [22] Modelling of SFRC using inverse finite element analysis
    Tlemat, H.
    Pilakoutas, K.
    Neocleous, K.
    MATERIALS AND STRUCTURES, 2006, 39 (02) : 221 - 233
  • [23] Modelling fat microstructure using finite element analysis
    Janssen, PWM
    JOURNAL OF FOOD ENGINEERING, 2004, 61 (03) : 387 - 392
  • [24] Modelling Upholstered Furniture Frames Using the Finite Element Method
    Matwiej, Lukasz
    Wiaderek, Krzysztof
    Jarecki, Witold
    Orlikowski, Dariusz
    Wieruszewski, Marek
    APPLIED SCIENCES-BASEL, 2025, 15 (02):
  • [25] Modelling Calvarial Development in Mice Using Finite Element Method
    Moazen, M.
    Babbs, C.
    Pauws, E.
    Fagan, M. J.
    Marghoub, A.
    JOURNAL OF MORPHOLOGY, 2019, 280 : S24 - S24
  • [26] Numerical modelling of passive duplexers using the finite element method
    Rajarajan, M
    Rahman, BMA
    Grattan, KTV
    INTEGRATED OPTICS DEVICES III, 1999, 3620 : 87 - 97
  • [27] Modelling Infinite Length Panels Using the Finite Element Method
    Fenner, Patrick
    Watson, Andrew
    Featherston, Carol
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2016, 16 (07)
  • [28] Thermal Modelling of the Torrefaction Process Using the Finite Element Method
    Dhaundiyal, Alok
    Toth, Laszlo
    ENVIRONMENTAL AND CLIMATE TECHNOLOGIES, 2021, 25 (01) : 736 - 749
  • [29] Delamination modelling of GLARE using the extended finite element method
    Sosa, J. L. Curiel
    Karapurath, N.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (07) : 788 - 791
  • [30] Modelling cyclic pile response using the Finite Element Method
    Taborda, D.
    Zdravkovic, L.
    Kontoe, S.
    Potts, D. M.
    APPLICATION OF STRESS-WAVE THEORY TO PILES: SCIENCE, TECHNOLOGY AND PRACTICE, 2008, : 327 - 333