Inorganic nanostructures from lyotropic liquid crystal phases

被引:70
|
作者
Attard, GS [1 ]
Edgar, M
Goltner, CG
机构
[1] Univ Southampton, Dept Chem, Southampton SO17 1BJ, Hants, England
[2] Free Univ Berlin, Inst Organ Chem, D-14195 Berlin, Germany
[3] Max Planck Inst Colloids & Interfaces, D-14513 Teltow, Germany
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S1359-6454(97)00256-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lyotropic liquid crystalline phases are exploited as templates for the synthesis of inorganic nanostructures. In this approach the aggregates of non-ionic amphiphiles in water function as confining media, i.e. the polymerisation of a water-soluble precursor lakes place in their aqueous domains. This approach to nanostructure design has considerable advantages over previous routes towards mesoporous ceramic oxides. (i) The nanostructure of the solid can be predicted a priori, (ii) this approach allows the use of non-ionic surfactants as templates and (iii) the progress of the formation can be monitored by various analytical techniques. The approach is tolerant to the introduction of metals into the silica framework, as is demonstrated using aluminium silicate as a representative example. The synthesis and a new way of monitoring the temporal evolution of the inorganic nanostructure using deuterium NMR spectroscopy are described. The results show that the lyotropic liquid crystal phase acts as a template. Further, a novel approach to studying sorption properties allows a comparison with other meso- and microporous materials.
引用
收藏
页码:751 / 758
页数:8
相关论文
共 50 条
  • [1] Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials
    Dierking, Ingo
    Al-Zangana, Shakhawan
    [J]. NANOMATERIALS, 2017, 7 (10)
  • [2] Synthesis and characterization of inorganic gels in a lyotropic liquid crystal medium .2. Synthesis of silica gels in lyotropic crystal phases obtained from cationic surfactants
    Dabadie, T
    Ayral, A
    Guizard, C
    Cot, L
    Lacan, P
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (11) : 1789 - 1794
  • [3] Nanocasting of lyotropic liquid crystal phases for metals and ceramics
    Göltner-Spickermann, C
    [J]. COLLOID CHEMISTRY 1, 2003, 226 : 29 - 54
  • [4] Electrochemical deposition of lamellar platinum nanostructures from lyotropic liquid crystal template
    Zhao, JK
    Chen, X
    Jiao, LY
    Chai, YC
    Wang, LY
    [J]. SCRIPTA MATERIALIA, 2004, 51 (06) : 593 - 598
  • [5] Effects of hydrolytic retardants on the texture of lyotropic liquid crystal phases
    Cui, Jingjie
    He, Wen
    Yue, Yuanzheng
    Zhao, Hongshi
    Xia, Xi
    [J]. INORGANIC MATERIALS, 2010, 46 (12) : 1369 - 1374
  • [6] Effects of hydrolytic retardants on the texture of lyotropic liquid crystal phases
    Jingjie Cui
    Wen He
    Yuanzheng Yue
    Hongshi Zhao
    Xi Xia
    [J]. Inorganic Materials, 2010, 46 : 1369 - 1374
  • [7] Lyotropic liquid crystal phases of monoolein in protic ionic liquids
    Paporakis, Stefan
    Brown, Stuart J.
    Darmanin, Connie
    Seibt, Susanne
    Adams, Patrick
    Hassett, Michael
    Martin, Andrew V.
    Greaves, Tamar L.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (02):
  • [8] Nanoporous materials from crosslinked gemini surfactant lyotropic liquid crystal network phases
    Jennings, James
    Mahanthappa, Mahesh
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [9] Lyotropic liquid crystal phases of phytantriol in a protic ionic liquid with fluorous anion
    Shen, Yan
    Greaves, Tamar L.
    Kennedy, Danielle F.
    Weerawardena, Asoka
    Kirby, Nigel
    Song, Gonghua
    Drummond, Calum J.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (39) : 21321 - 21329
  • [10] Ordered Nanostructures of Carbon Nanotube-Polymer Composites from Lyotropic Liquid Crystal Templating
    Kasprzak, Christopher R.
    Scherzinger, Evan T.
    Sarkar, Amrita
    Miao, Miranda
    Porcincula, Dominique H.
    Madriz, Alejandro M.
    Pennewell, Zachary M.
    Chau, Sophia S.
    Fernando, Raymond
    Stefik, Morgan
    Zhang, Shanju
    [J]. MACROMOLECULAR CHEMISTRY AND PHYSICS, 2018, 219 (17)