Ordered Nanostructures of Carbon Nanotube-Polymer Composites from Lyotropic Liquid Crystal Templating

被引:8
|
作者
Kasprzak, Christopher R. [1 ]
Scherzinger, Evan T. [1 ]
Sarkar, Amrita [2 ]
Miao, Miranda [1 ]
Porcincula, Dominique H. [1 ]
Madriz, Alejandro M. [1 ]
Pennewell, Zachary M. [1 ]
Chau, Sophia S. [1 ]
Fernando, Raymond [1 ]
Stefik, Morgan [2 ]
Zhang, Shanju [1 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Chem & Biochem, San Luis Obispo, CA 93407 USA
[2] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
carbon nanotubes; liquid crystal templating; photo-polymerization; polymer nanocomposites; polymerizable surfactants; CHAIN-LENGTH; ASSEMBLIES; NANOCOMPOSITES; SURFACTANT; ALIGNMENT; KINETICS; RHEOLOGY; FIBERS;
D O I
10.1002/macp.201800197
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A series of polymer nanocomposites containing single-walled carbon nanotubes (SWNTs) are prepared from polymerizable quaternary ammonium surfactants using photo-polymerization and investigated by means of polarized optical microscopy, small-angle X-ray scattering, and rheological measurements. The surfactant monomers with various alkyl chains of nonpolar tails form lyotropic liquid crystalline (LLC) mesophases in aqueous medium with hexagonal packing of cylindrical micelles. The physical adsorption of nonpolar tails of surfactants on the surface of SWNTs results in de-bundled nanotubes. The LLC phase diagram is investigated as functions of alkyl chain length, concentration, temperature, and SWNTs. As such, addition of SWNTs does not change the hexagonal mesophases but enhances the order-disorder transition temperatures and alters the rheological behaviors. After photo-polymerization, the microstructures of hexagonal packing are changed while addition of SWNTs does not disrupt the resulting microstructures. The polymerized composites are consistent with both lamellar and gyroid nanostructures and a possible model is proposed to interpret the observed phenomenon. Under the shear flow, the defect-free monodomain structures are obtained in the LLC phase and subsequently locked in the solid film after polymerization.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Modeling of carbon nanotubes and carbon nanotube-polymer composites
    Pal, G.
    Kumar, S.
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2016, 80 : 33 - 58
  • [2] Deformation of carbon nanotubes in nanotube-polymer composites
    Bower, C
    Rosen, R
    Jin, L
    Han, J
    Zhou, O
    [J]. APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3317 - 3319
  • [3] Circuit elements in carbon nanotube-polymer composites
    Hsu, WK
    Kotzeva, V
    Watts, PCP
    Chen, GZ
    [J]. CARBON, 2004, 42 (8-9) : 1707 - 1712
  • [4] Carbon nanotube-polymer composites for photonic devices
    Scardaci, V.
    Rozhin, A. G.
    Hennrich, F.
    Milne, W. I.
    Ferrari, A. C.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 37 (1-2): : 115 - 118
  • [5] Mechanics of the interface for carbon nanotube-polymer composites
    Desai, AV
    Haque, MA
    [J]. THIN-WALLED STRUCTURES, 2005, 43 (11) : 1787 - 1803
  • [6] Soluble Carbon Nanotubes and Nanotube-Polymer Composites
    Fujigaya, Tsuyohiko
    Nakashima, Naotoshi
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) : 1717 - 1738
  • [7] Advances in the study of carbon nanotube-polymer composites
    Shen, GX
    Zhuang, YY
    Lin, CJ
    [J]. PROGRESS IN CHEMISTRY, 2004, 16 (01) : 21 - 25
  • [8] Stretchable Carbon Nanotube-Polymer Composites with Homogenous Deformation and as Liquid Droplet Sensors
    Chang, Shulong
    Hou, Siyu
    Sun, Yuping
    Ge, Yali
    Xu, Jie
    Zhang, Yingjiu
    Pang, Rui
    Shang, Yuanyuan
    Cao, Anyuan
    [J]. ADVANCED MATERIALS INTERFACES, 2019, 6 (22)
  • [9] Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites
    Huang, Yan Y.
    Terentjev, Eugene M.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (23) : 4062 - 4068
  • [10] Recent Advances in Research on Carbon Nanotube-Polymer Composites
    Byrne, Michele T.
    Gun'ko, Yurii K.
    [J]. ADVANCED MATERIALS, 2010, 22 (15) : 1672 - 1688