Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites

被引:113
|
作者
Huang, Yan Y. [1 ]
Terentjev, Eugene M. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
COMPLEX PERMITTIVITY; DISPERSION; CONDUCTIVITY; THRESHOLD; BEHAVIOR; BLENDS;
D O I
10.1002/adfm.201000861
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advances in functionality and reliability of nanocomposite materials require careful formulation of processing methods to ultimately realize the desired properties. An extensive study of how the variation in fabrication process would affect the mechanism of conductivity and thus the final electrical properties of the carbon nanotube-polymer composite is presented. Some of the most widely implemented procedures are addressed, such as ultrasonication, melt shear mixing, and addition of surfactants. It is hoped that this study could provide a systematic guide to selecting and designing the downstream processing of carbon nanocomposites. Finally, this guide is used to demonstrate the fabrication and performance of a stretchable (pliable) conductor that can reversibly undergo uniaxial strain of over 100%, and other key applications are discussed.
引用
收藏
页码:4062 / 4068
页数:7
相关论文
共 50 条
  • [1] Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties
    Spitalsky, Zdenko
    Tasis, Dimitrios
    Papagelis, Konstantinos
    Galiotis, Costas
    [J]. PROGRESS IN POLYMER SCIENCE, 2010, 35 (03) : 357 - 401
  • [2] Thermal properties and percolation in carbon nanotube-polymer composites
    Bonnet, P.
    Sireude, D.
    Garnier, B.
    Chauvet, O.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [3] Development and thermal properties of carbon nanotube-polymer composites
    Jackson, Enrique M.
    Laibinis, Paul E.
    Collins, Warren E.
    Ueda, Akira
    Wingard, Charles D.
    Penn, Benjamin
    [J]. COMPOSITES PART B-ENGINEERING, 2016, 89 : 362 - 373
  • [4] Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions
    Zeng, You
    Liu, Pengfei
    Du, Jinhong
    Zhao, Long
    Ajayan, Pulickel M.
    Cheng, Hui-Ming
    [J]. CARBON, 2010, 48 (12) : 3551 - 3558
  • [5] The Electromagnetic Shielding Properties of Biodegradable Carbon Nanotube-Polymer Composites
    Pietrzak, Lukasz
    Stano, Ernest
    Szymanski, Lukasz
    [J]. ELECTRONICS, 2024, 13 (11)
  • [6] Dynamic Percolation as a Tool for Tailoring the Electrical Properties of Carbon Nanotube/Polymer Composites
    Combessis, A.
    Allais, A.
    Flandin, L.
    [J]. 2012 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (CEIDP), 2012, : 894 - 897
  • [7] Properties of carbon nanotube-polymer composites aligned in a magnetic field
    Camponeschi, Erin
    Vance, Richard
    Al-Haik, Marwan
    Garmestani, Hamid
    Tannenbaum, Rina
    [J]. CARBON, 2007, 45 (10) : 2037 - 2046
  • [8] Aligned carbon nanotube-polymer composites: Investigating their electrical and physical characteristics
    Banda, S
    Ounaies, Z
    Wilkinson, J
    Park, C
    Harrison, J
    [J]. SMART STRUCTURES AND MATERIALS 2004: ACTIVE MATERIALS: BEHAVIOR AND MECHANICS, 2004, 5387 : 27 - 36
  • [9] Influence of Carbon Nanotube Spatial Distribution on Electromagnetic Properties of Nanotube-Polymer Composites
    Moseenkov, Sergey I.
    Krasnikov, Dmitry V.
    Suslyaev, Valentin I.
    Korovin, Evgeniy Yu.
    Dorozhkin, Kiril V.
    Kuznetsov, Vladimir L.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2018, 255 (01):
  • [10] Modeling of carbon nanotubes and carbon nanotube-polymer composites
    Pal, G.
    Kumar, S.
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2016, 80 : 33 - 58