A BLOCK PRECONDITIONED HARMONIC PROJECTION METHOD FOR LARGE-SCALE NONLINEAR EIGENVALUE PROBLEMS

被引:3
|
作者
Xue, Fei [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2018年 / 40卷 / 03期
基金
美国国家科学基金会;
关键词
nonlinear eigenproblem; preconditioning; harmonic projection; local convergence; soft deflation; thick restart; GENERALIZED DAVIDSON METHOD; NEWTON-LIKE METHODS; JACOBI-DAVIDSON; HERMITIAN EIGENPROBLEMS; LOCAL CONVERGENCE; DEGENERATE EIGENVALUES; MATRIX POLYNOMIALS; INVARIANT PAIRS; LIMITED MEMORY; KRYLOV METHOD;
D O I
10.1137/17M112141X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a block preconditioned harmonic projection (BPHP) method for solving large-scale nonlinear eigenproblems of the form T (lambda) v = 0. Similar to classical preconditioned eigensolvers such as the locally optimal block preconditioned conjugate gradient method and preconditioned Lanczos, BPHP aims at computing a few eigenvalues of the nonlinear problem close to a specified shift, using preconditioners that enhance the local spectrum, without the need for exact solution of large shifted linear systems. We explore the development of search subspaces, stabilized preconditioning, nonlinear harmonic Rayleigh-Ritz projections, thick restart, and soft deflation capable of resolving linearly dependent eigenvectors. Numerical experiments show that BPHP with a good preconditioner is storage efficient, and it exhibits robust convergence. A moving-window-style partial deflation enables BPHP to reliably compute a large number of eigenvalues.
引用
下载
收藏
页码:A1809 / A1835
页数:27
相关论文
共 50 条
  • [1] A block preconditioned harmonic projection method for large-scale nonlinear eigenvalue problems
    Xue F.
    Xue, Fei (fxue@clemson.edu), 2018, Society for Industrial and Applied Mathematics Publications (40): : A1809 - A1835
  • [2] Preconditioned projection method for the numerical solution of large-scale eigenvalue problems.
    Lehoucq, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U444 - U444
  • [3] A numerical projection technique for large-scale eigenvalue problems
    Gamillscheg, Ralf
    Haase, Gundolf
    von der Linden, Wolfgang
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (10) : 2168 - 2173
  • [4] The RSRR method for solving large-scale nonlinear eigenvalue problems in boundary element method
    Xiao, Jinyou
    Wang, Junpeng
    Liang, Tengfei
    Wen, Lihua
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 93 : 150 - 160
  • [5] Computation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems
    Meerbergen, Karl
    Michiels, Wim
    van Beeumen, Roel
    Mengi, Emre
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1831 - 1863
  • [6] Computing the distance to instability for large-scale nonlinear eigenvalue problems
    Michiels, Wim
    Guglielmi, Nicola
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 3670 - 3675
  • [7] A block preconditioned steepest descent method for symmetric eigenvalue problems
    Jian, Shuai
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (20) : 10198 - 10217
  • [8] LARGE-SCALE COMPLEX EIGENVALUE PROBLEMS
    KERNER, W
    JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 85 (01) : 1 - 85
  • [9] A minimal subspace residual method for large-scale eigenvalue problems
    Huang, YH
    Hoffman, DK
    Kouri, DJ
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (17): : 8303 - 8308
  • [10] Minimal subspace residual method for large-scale eigenvalue problems
    Huang, Youhong
    Hoffman, David K.
    Kouri, Donald J.
    Journal of Chemical Physics, 1999, 110 (17):