Computing the distance to instability for large-scale nonlinear eigenvalue problems

被引:0
|
作者
Michiels, Wim [1 ]
Guglielmi, Nicola [2 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Heverlee, Belgium
[2] Univ Aquila, Dept Mat Pura Appl, I-67010 Coppito, Italy
关键词
ALGORITHM; MATRIX; PSEUDOSPECTRA; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A quadratically converging algorithm for the computation of the distance to instability of a broad class of nonlinear eigenvalue problems is presented, including the polynomial eigenvalue problem and the delay eigenvalue problem. The algorithm is grounded in a recently presented approach for computing the pseudospectral abscissa. The application of the algorithm only relies on the availability of a method to compute the rightmost eigenvalue of perturbed problems obtained by adding rank one perturbations to the coefficient matrices, for which, in case of large and sparse matrices, efficient iterative algorithms can be used.
引用
收藏
页码:3670 / 3675
页数:6
相关论文
共 50 条
  • [1] Computation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems
    Meerbergen, Karl
    Michiels, Wim
    van Beeumen, Roel
    Mengi, Emre
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1831 - 1863
  • [2] LARGE-SCALE COMPLEX EIGENVALUE PROBLEMS
    KERNER, W
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 85 (01) : 1 - 85
  • [3] Parallel computing study for the large-scale generalized eigenvalue problems in modal analysis
    FAN XuanHua
    CHEN Pu
    WU RuiAn
    XIAO ShiFu
    [J]. Science China(Physics,Mechanics & Astronomy), 2014, (03) : 477 - 489
  • [4] Parallel computing study for the large-scale generalized eigenvalue problems in modal analysis
    XuanHua Fan
    Pu Chen
    RuiAn Wu
    ShiFu Xiao
    [J]. Science China Physics, Mechanics and Astronomy, 2014, 57 : 477 - 489
  • [5] Parallel computing study for the large-scale generalized eigenvalue problems in modal analysis
    Fan XuanHua
    Chen Pu
    Wu RuiAn
    Xiao ShiFu
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (03) : 477 - 489
  • [6] A block preconditioned harmonic projection method for large-scale nonlinear eigenvalue problems
    Xue F.
    [J]. Xue, Fei (fxue@clemson.edu), 2018, Society for Industrial and Applied Mathematics Publications (40): : A1809 - A1835
  • [7] RATIONAL REDUCTION OF LARGE-SCALE EIGENVALUE PROBLEMS
    APPA, K
    SMITH, GCC
    HUGHES, JT
    [J]. AIAA JOURNAL, 1972, 10 (07) : 964 - &
  • [8] A BLOCK PRECONDITIONED HARMONIC PROJECTION METHOD FOR LARGE-SCALE NONLINEAR EIGENVALUE PROBLEMS
    Xue, Fei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1809 - A1835
  • [9] Fast algorithms for computing the distance to instability of nonlinear eigenvalue problems, with application to time-delay systems
    Verhees D.
    Van Beeumen R.
    Meerbergen K.
    Guglielmi N.
    Michiels W.
    [J]. Michiels, Wim (wim.michiels@cs.kuleuven.be), 1600, Springer Science and Business Media Deutschland GmbH (02): : 133 - 142
  • [10] LARGE-SCALE AND GLOBAL MAXIMIZATION OF THE DISTANCE TO INSTABILITY
    Mengi, Emre
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (04) : 1776 - 1809