Inferring Touch from Motion in Real World Data

被引:0
|
作者
Bissig, Pascal [1 ]
Brandes, Philipp [1 ]
Passerini, Jonas [1 ]
Wattenhofer, Roger [1 ]
机构
[1] ETH, Zurich, Switzerland
关键词
Motion sensing; Side-channel attack; Touch input;
D O I
10.1007/978-3-319-30303-1_4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most modern smartphones are equipped with motion sensors to measure the movement and orientation of the device. On Android and iOS, accessing the motion sensors does not require any special permissions. On the other hand, touch input is only available to the application currently in the foreground because it may reveal sensitive information such as passwords. In this paper, we present a side channel attack on touch input by analyzing motion sensor readings. Our data set contains more than a million gestures from 1'493 users with 615 distinct device models. To infer touch from motion inputs, we use a classifier based on the Dynamic Time Warping algorithm. The evaluation shows that our method performs significantly better than random guessing in real world usage scenarios.
引用
收藏
页码:50 / 65
页数:16
相关论文
共 50 条
  • [21] Deriving Real-World Insights From Real-World Data: Biostatistics to the Rescue
    Pencina, Michael J.
    Rockhold, Frank W.
    D'Agostino, Ralph B., Sr.
    ANNALS OF INTERNAL MEDICINE, 2018, 169 (06) : 401 - +
  • [22] A Statistical Roadmap for Journey from Real-World Data to Real-World Evidence
    Yixin Fang
    Hongwei Wang
    Weili He
    Therapeutic Innovation & Regulatory Science, 2020, 54 : 749 - 757
  • [23] A Statistical Roadmap for Journey from Real-World Data to Real-World Evidence
    Fang, Yixin
    Wang, Hongwei
    He, Weili
    THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2020, 54 (04) : 749 - 757
  • [24] Developing real-world evidence from real-world data: Transforming raw data into analytical datasets
    Bastarache, Lisa
    Brown, Jeffrey S.
    Cimino, James J.
    Dorr, David A.
    Embi, Peter J.
    Payne, Philip R. O.
    Wilcox, Adam B.
    Weiner, Mark G.
    LEARNING HEALTH SYSTEMS, 2022, 6 (01):
  • [25] A nonparametric framework for inferring orders of categorical data from category-real pairs
    Amornbunchornvej, Chainarong
    Surasvadi, Navaporn
    Plangprasopchok, Anon
    Thajchayapong, Suttipong
    HELIYON, 2020, 6 (11)
  • [26] Switching from ocrelizumab to cladribine: real world data
    O'Neill, D.
    Sharma, M.
    Gonzales, B.
    Vandenheuval, M.
    Tse, B.
    Hodgkinson, S.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (3_SUPPL) : 311 - 311
  • [27] Real-World Data from a Spanish Institution
    Zwisler-Contreras, P.
    Ramos, I.
    Guardamagna, M.
    Ithurbisquy, C.
    Oliva, L.
    Ruiz, S.
    Alba, E.
    JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (03) : S580 - S581
  • [28] On the transfer of visual data from the laboratory to the real world
    Ronchi, LR
    AIC: 9TH CONGRESS OF THE INTERNATIONAL COLOUR ASSOCIATION, 2002, 4421 : 339 - 342
  • [29] Real data transforming the real world
    Dean, Rachel
    VETERINARY RECORD, 2019, 185 (20) : 636 - 636
  • [30] Blur Interpolation Transformer for Real-World Motion from Blur
    Zhong, Zhihang
    Cao, Mingdeng
    Ji, Xiang
    Zheng, Yinqiang
    Sato, Imari
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5713 - 5723