In the last decade, non-conforming domain decomposition methods such as the mortar finite element method have been shown to be reliable techniques for several engineering applications that often employ complex finite element design. With this technique, one can conveniently assemble local subcomponents into a global domain without matching the finite element nodes of each subcomponent at the common interface. In this work, we present computational results for the convergence of a mortar finite element technique in three dimensions for a model problem. We employ the mortar finite element formulation in conjunction with higher-order elements, where both mesh refinement and degree enhancement are combined to increase accuracy. Our numerical results demonstrate optimality for the resulting non-conforming method for various discretizations.
机构:
Univ Nacl La Plata, CONICET, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, ArgentinaUniv Nacl La Plata, CONICET, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, Argentina
Elias, Matias W.
Zyserman, Fabio, I
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl La Plata, CONICET, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, ArgentinaUniv Nacl La Plata, CONICET, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, Argentina
Zyserman, Fabio, I
Rosas-Carbajal, Marina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris, Inst Phys Globe Paris, CNRS, F-75005 Paris, FranceUniv Nacl La Plata, CONICET, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, Argentina
Rosas-Carbajal, Marina
Manassero, Maria Constanza
论文数: 0引用数: 0
h-index: 0
机构:
Macquarie Univ, Australian Res Council, Ctr Excellence Core Crust Fluid Syst GEMOC, Dept Earth & Environm Sci, Sydney, NSW 2109, AustraliaUniv Nacl La Plata, CONICET, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, Argentina