Phosphorylated biomass-derived porous carbon material for efficient removal of U(VI) in wastewater

被引:50
|
作者
Sun, Yanbing [1 ]
Zhang, Haoyan [2 ,3 ]
Yuan, Nan [1 ]
Ge, Yulin [1 ]
Dai, Ying [3 ]
Yang, Zhen [1 ]
Lu, Liang [1 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[2] China Natl Nucl Corp, Res & Design Engn Inst 4, Shijiazhuang 050022, Hebei, Peoples R China
[3] East China Univ Technol, State Key Lab Nucl Resources & Environm, Nanchang 330013, Jiangxi, Peoples R China
关键词
Biomass; Porous Carbon; Phosphorylation; Adsorption; U(VI); URANIUM EXTRACTION; LITHIUM-ION; ADSORPTION; COMPOSITE; SORBENT; EQUILIBRIUM; FABRICATION; BIOSORBENT; REDUCTION; BEHAVIOR;
D O I
10.1016/j.jhazmat.2021.125282
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A simple strategy to prepare cost-effective adsorbent materials for the removal of U(VI) in radioactive wastewater is of great significance to environmental protection. Here, activated orange peel was used as a precursor for the synthesis of biomass charcoal, and then a phosphorylated honeycomb-like porous carbon (HLPC-PO4) material was prepared through simple phosphorylation modification. FT-IR and XPS showed that P?O?C, P?C, and P?O bonds appeared in HLPC-PO4, indicating that the phosphorylation process is mainly the reaction of C?O bonds on the surface of the material with ?PO4. The results of the batch experiments showed that the uptake equilibrium of HLPC-PO4 to U(VI) occurred within 20 min, and the kinetic simulation showed that the process was monolayer chemical adsorption. Interestingly, the maximum U(VI) uptake capacity of HLPC-PO4 at T = 298.15 K and pH = 6.0 was 552.6 mg/g, which was more than 3 times that of HLPC. In addition, HLPC-PO4 showed an adsorption selectivity of 70.1% for U(VI). After 5 cycles, HLPC-PO4 maintained its original adsorption capacity of 90.5%. The adsorption mechanism can be explained as the complexation of U(VI) with P?O and P?O on the surface of the adsorbent, confirming the strong bonding ability of ?PO4 to U(VI).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Biomass-derived fire-retardant porous carbon towards efficient electromagnetic wave absorption and shielding
    Ai, Yusen
    Xing, Ruizhe
    Huang, Renliang
    Kong, Jie
    Su, Rongxin
    CARBON, 2024, 227
  • [42] Biomass-derived porous carbon materials for advanced lithium sulfur batteries
    Poting Liu
    Yunyi Wang
    Jiehua Liu
    Journal of Energy Chemistry, 2019, (07) : 171 - 185
  • [43] Facile synthesis of biomass-derived hierarchical porous carbon microbeads for supercapacitors
    Ma, Yu-zhu
    Yu, Bao-jun
    Guo, Yan
    Wang, Cheng-yang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (08) : 2231 - 2240
  • [44] Biomass-Derived Porous Carbon Materials for Li-Ion Battery
    Nazhipkyzy, Meruyert
    Maltay, Anar B.
    Askaruly, Kydyr
    Assylkhanova, Dana D.
    Seitkazinova, Aigerim R.
    Mansurov, Zulkhair A.
    NANOMATERIALS, 2022, 12 (20)
  • [45] Emerging trends in biomass-derived porous carbon materials for hydrogen storage
    Elyasi, Setareh
    Saha, Shalakha
    Hameed, Nishar
    Mahon, Peter J.
    Juodkazis, Saulius
    Salim, Nisa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 62 : 272 - 306
  • [46] Biomass-derived porous carbon materials for advanced lithium sulfur batteries
    Poting Liu
    Yunyi Wang
    Jiehua Liu
    Journal of Energy Chemistry, 2019, 34 (07) : 171 - 185
  • [47] Biomass-derived dendritic-like porous carbon aerogels for supercapacitors
    Ma, Yu-zhu
    Guo, Yan
    Zhou, Cong
    Wang, Cheng-yang
    ELECTROCHIMICA ACTA, 2016, 210 : 897 - 904
  • [48] Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors
    Sun, Li
    Gong, Youning
    Li, Delong
    Pan, Chunxu
    GREEN CHEMISTRY, 2022, 24 (10) : 3864 - 3894
  • [49] Biomass-derived porous carbon materials for advanced lithium sulfur batteries
    Liu, Poting
    Wang, Yunyi
    Liu, Jiehua
    JOURNAL OF ENERGY CHEMISTRY, 2019, 34 : 171 - 185
  • [50] Biomass-derived porous carbon electrodes for high-performance supercapacitors
    Sun, Yao
    Xue, Jianjun
    Dong, Shengyang
    Zhang, Yadi
    An, Yufeng
    Ding, Bing
    Zhang, Tengfei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (12) : 5166 - 5176