Real-time protection of the JET ITER-like wall based on near infrared imaging diagnostic systems

被引:16
|
作者
Huber, A. [1 ,2 ,51 ]
Kinna, D. [1 ,3 ]
Huber, V [1 ,4 ]
Arnoux, G. [1 ,3 ]
Sergienko, G. [1 ,2 ,51 ]
Balboa, I [1 ,3 ]
Balorin, C. [1 ,5 ]
Carman, P. [1 ,3 ,19 ]
Carvalho, P. [1 ,6 ,65 ]
Collins, S. [1 ,3 ,19 ]
Conway, N. [1 ,3 ,19 ]
Mccullen, P. [1 ,3 ]
Drenik, A. [1 ,7 ,74 ,93 ]
Jachmich, S. [1 ,8 ,47 ,70 ]
Jouve, M. [1 ,5 ]
Linsmeier, Ch [1 ,2 ]
Lomanowski, B. [1 ,9 ,13 ]
Lomas, P. J. [1 ,3 ,19 ]
Lowry, C. G. [1 ,10 ,11 ]
Maggi, C. F. [1 ,3 ]
Matthews, G. F. [1 ,3 ,19 ]
Meigs, A. [1 ,3 ]
Mertens, Ph [1 ,2 ]
Nunes, I [1 ,6 ]
Price, M. [1 ,3 ,19 ]
Puglia, P. [1 ,12 ,64 ]
Riccardo, V [1 ,3 ]
Rimini, F. G. [1 ,3 ,19 ]
Widdowson, A. [1 ,3 ]
Zastrow, K-D [1 ,3 ]
Abduallev, S. [51 ]
Abhangi, M. [58 ]
Abreu, P. [65 ]
Afzal, M. [19 ]
Aggarwal, K. M. [41 ]
Ahlgren, T. [113 ]
Ahn, J. H. [20 ]
Aho-Mantila, L. [123 ]
Aiba, N. [81 ]
Airila, M. [123 ]
Albanese, R. [116 ]
Aldred, V. [19 ]
Alegre, D. [105 ]
Alessi, E. [57 ]
Aleynikov, P. [67 ]
Alfier, A. [24 ]
Alkseev, A. [84 ]
Allinson, M. [19 ]
Alper, B. [19 ]
Alves, E. [65 ]
机构
[1] EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-52425 Julich, Germany
[3] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] Forschungszentrum Julich, Supercomp Ctr, D-52425 Julich, Germany
[5] CEA, IRFM, F-13108 St Paul Les Durance, France
[6] Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecn, Lisbon, Portugal
[7] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[8] ERM KMS, Lab Plasma Phys, B-1000 Brussels, Belgium
[9] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[10] European Commiss, B-1049 Brussels, Belgium
[11] Culham Sci Ctr, JET Exploitat Unit, Abingdon OX14 3DB, Oxon, England
[12] Ecole Polytech Fed Lausanne, SPC, CH-1015 Lausanne, Switzerland
[13] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[14] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[15] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[16] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[17] Arizona State Univ, Tempe, AZ USA
[18] Barcelona Supercomp Ctr, Barcelona, Spain
[19] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[20] CEA, IRFM, F-13108 St Paul Les Durance, France
[21] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[22] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[23] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[24] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[25] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[26] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[27] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[28] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[29] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[30] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[31] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[32] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[33] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[34] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[35] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[36] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[37] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[38] Univ Basel, Dept Phys, Basel, Switzerland
[39] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[40] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[41] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[42] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[43] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[44] Dublin City Univ, Dublin, Ireland
[45] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[46] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[47] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[48] European Commiss, B-1049 Brussels, Belgium
[49] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[50] FOM Inst DIFFER, Eindhoven, Netherlands
关键词
imaging diagnostics; real-time protection system; hot spots; JUVIL software; image processing; RADIATION; DIVERTOR;
D O I
10.1088/1741-4326/aad481
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In JET with ITER-like wall (JET-ILW), the first wall was changed to metallic materials (tungsten and beryllium) [1] which require a reliable protection system to avoid damage of the plasma-facing components (PFCs) due to beryllium melting or cracking of tungsten owing to thermal fatigue. To address this issue, a protection system with real time control, based on imaging diagnostics, has been implemented on JET-ILW in 2011. This paper describes the design, implementation, and operation of the near infrared imaging diagnostic system of the JET-ILW plasma experiment and its integration into the existing JET-ILW protection architecture. The imaging system comprises eleven analogue CCD cameras which demonstrate a high robustness against changes of system parameters like the emissivity. The system covers about two thirds of the main chamber wall and almost half of the divertor. A real-time imaging processing unit is used to convert the raw data into surface temperatures taking into account the different emissivity for the various materials and correcting for artefacts resulting e.g. from neutron impact. Regions of interest (ROI) on the selected PFCs are analysed in real time and the maximiun temperature measured for each ROI is sent to other real time systems to trigger an appropriate response of the plasma control system, depending on the location of a hot spot. A hot spot validation algorithm was successfully integrated into the real-time system and is now used to avoid false alarms caused by neutrons and dust. The design choices made for the video imaging system, the implications for the hardware components and the calibration procedure are discussed. It will be demonstrated that the video imaging protection system can work properly under harsh electromagnetic conditions as well as under neutron and gamma radiation. Examples will be shown of instances of hot spot detection that abort the plasma discharge. The limits of the protection system and the associated constraints on plasma operation are also presented. The real-time protection system has been operating routinely since 2011. During this period, less than 0.5% of the terminated discharges were aborted by a malfunction of the system. About 2%-3% of the discharges were terminated due to the detection of actual hot spots.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Real-time imaging quantification of scaffold degradation using invisible near-infrared fluorescence
    Kim, S. H.
    Lee, S. J.
    Lee, J. H.
    Hyun, H.
    Ashitate, Y.
    Frangioni, J. V.
    Khang, G.
    Choi, H. S.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 317 - 317
  • [32] Real-time imaging of muscle oxygenation using spatially resolved near-infrared spectroscopy
    Kek, KJ
    Samizo, M
    Kudo, N
    Yamamoto, K
    APBP 2004: SECOND ASIAN AND PACIFIC RIM SYMPOSIUM ON BIOPHOTONICS, PROCEEDINGS, 2004, : 30 - 31
  • [33] Real-Time Mapping of Polymer Film Thickness Using Near-Infrared Hyperspectral Imaging
    Chen, Xiaoyun
    Wang, Jin
    Thurber, Christopher
    Benedict, Matthew
    Olson, Kurt
    Marchbanks, Eric
    Kim, Hyunwoo
    Bishop, Michael
    APPLIED SPECTROSCOPY, 2025,
  • [34] Real-time optoacoustic imaging using near infrared absorbing gold nanoshells for contrast enhancement
    Fournelle, M.
    Maass, K.
    Fonfara, H.
    Welsch, H. -J.
    Hewener, H.
    Guenther, C.
    Lemor, R.
    2007 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1-6, 2007, : 2417 - 2420
  • [35] Near-Infrared Fluorescent Macromolecular Reporters for Real-Time Imaging and Urinalysis of Cancer Immunotherapy
    He, Shasha
    Li, Jingchao
    Lyu, Yan
    Huang, Jiaguo
    Pu, Kanyi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (15) : 7075 - 7082
  • [36] Real-time Imaging of Mycobacterium tuberculosis, Using a Novel Near-Infrared Fluorescent Substrate
    Yang, Hee-Jeong
    Kong, Ying
    Cheng, Yunfeng
    Janagama, Harish
    Hassounah, Hany
    Xie, Hexin
    Rao, Jianghong
    Cirillo, Jeffrey D.
    JOURNAL OF INFECTIOUS DISEASES, 2017, 215 (03): : 405 - 414
  • [37] A Multifunctional Nanomicelle for Real-Time Targeted Imaging and Precise Near-Infrared Cancer Therapy
    Tian, Jiangwei
    Ding, Lin
    Ju, Huangxian
    Yang, Yongchao
    Li, Xilan
    Shen, Zhen
    Zhu, Zhi
    Yu, Jun-Sheng
    Yang, Chaoyong James
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (36) : 9544 - 9549
  • [38] Visibility estimation via near-infrared bispectral real-time imaging in bad weather
    Zhao, Dong
    Zhou, Lei
    Li, Yue
    He, Wenxuan
    Arun, Pattathal V.
    Zhu, Xuguang
    Hu, Jianling
    INFRARED PHYSICS & TECHNOLOGY, 2024, 136
  • [39] Real-time in vivo imaging of metastatic bone tumors with a targeted near-infrared fluorophore
    Lim, Wonbong
    Sohn, HongMoon
    Ko, Youngjong
    Park, Mineon
    Kim, Bora
    Jo, Danbi
    Jung, Jin Seok
    Yang, Dae Hyeok
    Kim, Jangho
    Kim, Ok Joon
    Kim, Donghwi
    Moon, Young Lae
    Min, Jung-Joon
    Hyun, Hoon
    ONCOTARGET, 2017, 8 (39) : 65770 - 65777
  • [40] Rapid Synthesis of Near Infrared Polymeric Micelles for Real-Time Sentinel Lymph Node Imaging
    Pan, Dipanjan
    Cai, Xin
    Kim, Benjamin
    Stacy, Allen J.
    Wang, Lihong V.
    Lanza, Gregory M.
    ADVANCED HEALTHCARE MATERIALS, 2012, 1 (05) : 582 - 589