Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme

被引:36
|
作者
Cheng, Qin-Bo [1 ]
Chen, Xi [2 ]
Xu, Chong-Yu [3 ,4 ]
Reinhardt-Imjela, Christian [1 ]
Schulte, Achim [1 ]
机构
[1] Free Univ Berlin, Inst Geog Sci, D-12249 Berlin, Germany
[2] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
[3] Univ Oslo, Dept Geosci, N-0316 Oslo, Norway
[4] Uppsala Univ, Dept Earth Sci, Uppsala, Sweden
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
Bayesian inference; Box-Cox transformation; Nash-Sutcliffe Efficiency coefficient; Generalized Error Distribution; SWAT-WB-VSA; BAYESIAN METHOD; DATA ASSIMILATION; GLUE; SOIL; AUTOCORRELATION; IMPLEMENTATION; INFERENCE; JOINT;
D O I
10.1016/j.jhydrol.2014.10.008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the likelihood functions for uncertainty analysis of hydrological models are compared and improved through the following steps: (1) the equivalent relationship between the Nash-Sutcliffe Efficiency coefficient (NSE) and the likelihood function with Gaussian independent and identically distributed residuals is proved; (2) a new estimation method of the Box-Cox transformation (BC) parameter is developed to improve the effective elimination of the heteroscedasticity of model residuals; and (3) three likelihood functions-NSE, Generalized Error Distribution with BC (BC-GED) and Skew Generalized Error Distribution with BC (BC-SGED)-are applied for SWAT-WB-VSA (Soil and Water Assessment Tool - Water Balance - Variable Source Area) model calibration in the Baocun watershed, Eastern China. Performances of calibrated models are compared using the observed river discharges and groundwater levels. The result shows that the minimum variance constraint can effectively estimate the BC parameter. The form of the likelihood function significantly impacts on the calibrated parameters and the simulated results of high and low flow components. SWAT-WB-VSA with the NSE approach simulates flood well, but baseflow badly owing to the assumption of Gaussian error distribution, where the probability of the large error is low, but the small error around zero approximates equiprobability. By contrast, SWAT-WB-VSA with the BC-GED or BC-SGED approach mimics baseflow well, which is proved in the groundwater level simulation. The assumption of skewness of the error distribution may be unnecessary, because all the results of the BC-SGED approach are nearly the same as those of the BC-GED approach. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2202 / 2214
页数:13
相关论文
共 50 条
  • [1] Markov chain Monte Carlo scheme for parameter uncertainty analysis in water quality model
    Wang, Jian-Ping
    Cheng, Sheng-Tong
    Jia, Hai-Feng
    Huanjing Kexue/Environmental Science, 2006, 27 (01): : 24 - 30
  • [2] Rainfall-runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme
    McMillan, Hilary
    Clark, Martyn
    WATER RESOURCES RESEARCH, 2009, 45
  • [3] Estimating reaction model parameter uncertainty with Markov Chain Monte Carlo
    Albrecht, Jacob
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 48 : 14 - 28
  • [4] An Improved Markov Chain Monte Carlo Scheme for Parameter Estimation Analysis
    Liu, Fang
    Pan, Hao
    Jiang, Desheng
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 702 - +
  • [5] Comparison of the Generalized Likelihood Uncertainty Estimation and Markov Chain Monte Carlo Methods for Uncertainty Analysis of the ORYZA_V3 Model
    Tan, Junwei
    Cao, Jingjing
    Cui, Yuanlai
    Duan, Qingyun
    Gong, Wei
    AGRONOMY JOURNAL, 2019, 111 (02) : 555 - 564
  • [6] On the relationship between Markov chain Monte Carlo methods for model uncertainty
    Godsill, SJ
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (02) : 230 - 248
  • [7] Advanced Markov Chain Monte Carlo Approach for Finite Element Calibration under Uncertainty
    Zhang, Jian
    Wan, Chunfeng
    Sato, Tadanobu
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2013, 28 (07) : 522 - 530
  • [8] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25
  • [9] Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling
    Blasone, Roberta-Serena
    Vrugt, Jasper A.
    Madsen, Henrik
    Rosbjerg, Dan
    Robinson, Bruce A.
    Zyvoloski, George A.
    ADVANCES IN WATER RESOURCES, 2008, 31 (04) : 630 - 648
  • [10] Quantifying parameter uncertainty in a coral reef model using Metropolis-Coupled Markov Chain Monte Carlo
    Clancy, Damian
    Tanner, Jason E.
    McWilliam, Stephen
    Spencer, Matthew
    ECOLOGICAL MODELLING, 2010, 221 (10) : 1337 - 1347