Asymptotic Behavior for Petrovsky Equation with Localized Damping

被引:9
|
作者
Han, Xiaosen [1 ,2 ]
Wang, Mingxin [3 ]
机构
[1] Henan Univ, Coll Math & Informat Sci, Kaifeng 475001, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
[3] Harbin Inst Technol, Ctr Sci Res, Harbin 150080, Peoples R China
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Petrovsky equation; Energy decay rate; Localized damping; ENERGY DECAY-RATES; WAVE-EQUATION; INTEGRAL-INEQUALITIES; UNIFORM DECAY; EXISTENCE; SYSTEM;
D O I
10.1007/s10440-009-9493-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate asymptotic behavior for the solution of the Petrovsky equation with locally distributed damping. Without growth condition on the damping at the origin, we extend the energy decay result in Martinez (Rev. Math. Complut. Madr. 12(1):251-283, 1999) for the single wave equation to the Petrovsky equation. The explicit energy decay rate is established by using piecewise multiplier techniques and weighted nonlinear integral inequalities.
引用
收藏
页码:1057 / 1076
页数:20
相关论文
共 50 条
  • [11] Wellposedness and Asymptotic Behavior of the Perturbed Nonlinear Schrodinger Equation with Kerr Law Nonlinearity and Localized Damping
    Zhang, Zaiyun
    Liu, Zhenhai
    Sun, Mingbao
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2020, 63 (03): : 293 - 322
  • [12] Asymptotic Behavior for a Coupled Petrovsky-Petrovsky System with Infinite Memories
    Saber, Hicham
    Ferhat, Mohamed
    Cherif, Amin Benaissa
    Blouhi, Tayeb
    Himadan, Ahmed
    Alraqad, Tariq
    Moumen, Abdelkader
    MATHEMATICS, 2023, 11 (21)
  • [13] Asymptotic Behavior of Global Solutions for a System of Petrovsky
    Ye, Yaojun
    Zhu, Wanzhen
    Zhou, Xiaoyan
    2009 INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION, PROCEEDINGS, 2009, : 283 - 285
  • [14] Asymptotic behavior of global solutions for a system of Petrovsky
    Ye, Yaojun
    Hou, Xianmin
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 1191 - 1193
  • [15] ASYMPTOTIC BEHAVIOR OF THE NONLOCAL DIFFUSION EQUATION WITH LOCALIZED SOURCE
    Yang, Jinge
    Zhou, Shuangshuang
    Zheng, Sining
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) : 3521 - 3532
  • [16] The asymptotic behavior of blowup solution of localized nonlinear equation
    Wang, LW
    Chen, QY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (02) : 315 - 321
  • [17] ASYMPTOTIC BEHAVIOR OF THE TRANSMISSION EULER-BERNOULLI PLATE AND WAVE EQUATION WITH A LOCALIZED KELVIN-VOIGT DAMPING
    Hassine, Fathi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (06): : 1757 - 1774
  • [18] Global existence and asymptotic behavior for a coupled hyperbolic system with localized damping
    Han, Xiaosen
    Wang, Mingxin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 965 - 986
  • [19] The asymptotic behavior of solutions to the Kirchhoff equation with a viscous damping term
    Mizumachi T.
    Journal of Dynamics and Differential Equations, 1997, 9 (2) : 211 - 247
  • [20] ASYMPTOTIC BEHAVIOR OF WAVE EQUATION OF KIRCHHOFF TYPE WITH STRONG DAMPING
    Zhihua Song
    Yuanyuan Zhang
    AnnalsofAppliedMathematics, 2017, 33 (01) : 50 - 62