On local conservation of numerical methods for conservation laws

被引:14
|
作者
Shi, Cengke [1 ]
Shu, Chi-Wang [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Local conservation property; Conservation laws; Lax-Wendroff theorem; Compact schemes; Continuous finite element Galerkin method; FINITE-ELEMENT-METHOD; SCHEMES;
D O I
10.1016/j.compfluid.2017.06.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce a definition of the local conservation property for numerical methods solving time dependent conservation laws, which generalizes the classical local conservation definition. The motivation of our definition is the Lax-Wendroff theorem, and thus we prove it for locally conservative numerical schemes per our definition in one and two space dimensions. Several numerical methods, including continuous Galerkin methods and compact schemes, which do not fit the classical local conservation definition, are given as examples of locally conservative methods under our generalized definition. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [31] An a priori a posteriori approach to numerical conservation laws
    Cockburn, B
    Gremaud, PA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 379 - 380
  • [32] A NEW APPROACH TO NUMERICAL CONSERVATION-LAWS
    COCKBURN, B
    GREMAUD, PA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (04): : 481 - 486
  • [33] Mathematical and numerical study of a system of conservation laws
    Eymard, R.
    Tillier, E.
    JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (02) : 197 - 239
  • [34] ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS
    Amorim, Paulo
    Colombo, Rinaldo M.
    Teixeira, Andreia
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 19 - 37
  • [35] Mathematical and numerical study of a system of conservation laws
    R. Eymard
    E. Tillier
    Journal of Evolution Equations, 2007, 7 : 197 - 239
  • [36] On the numerical solution of conservation laws by minimizing residuals
    Lowrie, R.B., 1600, Academic Press Inc. (113):
  • [37] A numerical scheme for doubly nonlocal conservation laws
    Abreu, E.
    Valencia-Guevara, J. C.
    Huacasi-Machaca, M.
    Perez, J.
    CALCOLO, 2024, 61 (04)
  • [38] Conservation laws and the numerical solution of ODEs, II
    Shampine, LF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (02) : 61 - 72
  • [39] Numerical schemes for networks of hyperbolic conservation laws
    Borsche, Raul
    APPLIED NUMERICAL MATHEMATICS, 2016, 108 : 157 - 170
  • [40] Functional Equivariance and Conservation Laws in Numerical Integration
    Robert I. McLachlan
    Ari Stern
    Foundations of Computational Mathematics, 2024, 24 : 149 - 177