On local conservation of numerical methods for conservation laws

被引:14
|
作者
Shi, Cengke [1 ]
Shu, Chi-Wang [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Local conservation property; Conservation laws; Lax-Wendroff theorem; Compact schemes; Continuous finite element Galerkin method; FINITE-ELEMENT-METHOD; SCHEMES;
D O I
10.1016/j.compfluid.2017.06.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce a definition of the local conservation property for numerical methods solving time dependent conservation laws, which generalizes the classical local conservation definition. The motivation of our definition is the Lax-Wendroff theorem, and thus we prove it for locally conservative numerical schemes per our definition in one and two space dimensions. Several numerical methods, including continuous Galerkin methods and compact schemes, which do not fit the classical local conservation definition, are given as examples of locally conservative methods under our generalized definition. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [1] NUMERICAL-METHODS FOR CONSERVATION LAWS
    WENDROFF, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A153 - A153
  • [2] Minisymposium "Numerical Methods for Conservation Laws"
    Russo, G.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 225 - 225
  • [3] Numerical preservation of multiple local conservation laws
    Frasca-Caccia, Gianluca
    Hydon, Peter E.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 403
  • [4] Numerical methods for conservation laws with rough flux
    H. Hoel
    K. H. Karlsen
    N. H. Risebro
    E. B. Storrøsten
    Stochastics and Partial Differential Equations: Analysis and Computations, 2020, 8 : 186 - 261
  • [5] Numerical methods for conservation laws with rough flux
    Hoel, H.
    Karlsen, K. H.
    Risebro, N. H.
    Storrosten, E. B.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (01): : 186 - 261
  • [6] On approximation of local conservation laws by nonlocal conservation laws
    Keimer, Alexander
    Pflug, Lukas
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1927 - 1955
  • [7] Numerical Methods for Conservation Laws: From Analysis to Algorithms
    Klingenberg, Christian
    SIAM REVIEW, 2020, 62 (03) : 735 - 737
  • [8] Embedded turbulence model in numerical methods for hyperbolic conservation laws
    Drikakis, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (09) : 763 - 781
  • [9] Numerical gradient methods for flux identification in a system of conservation laws
    François James
    Marie Postel
    Journal of Engineering Mathematics, 2008, 60 : 293 - 317
  • [10] Stable numerical methods for conservation laws with discontinuous flux function
    Seaid, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 383 - 400